mirror of
https://github.com/myshell-ai/OpenVoice
synced 2024-11-21 14:38:04 +00:00
196 lines
6.7 KiB
Plaintext
196 lines
6.7 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "b6ee1ede",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Cross-Lingual Voice Clone Demo"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "b7f043ee",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import os\n",
|
||
"import torch\n",
|
||
"from openvoice import se_extractor\n",
|
||
"from openvoice.api import ToneColorConverter"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "15116b59",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Initialization"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "aacad912",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"ckpt_converter = 'checkpoints/converter'\n",
|
||
"device=\"cuda:0\" if torch.cuda.is_available() else \"cpu\"\n",
|
||
"output_dir = 'outputs'\n",
|
||
"\n",
|
||
"tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)\n",
|
||
"tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')\n",
|
||
"\n",
|
||
"os.makedirs(output_dir, exist_ok=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "3db80fcf",
|
||
"metadata": {},
|
||
"source": [
|
||
"In this demo, we will use OpenAI TTS as the base speaker to produce multi-lingual speech audio. The users can flexibly change the base speaker according to their own needs. Please create a file named `.env` and place OpenAI key as `OPENAI_API_KEY=xxx`. We have also provided a Chinese base speaker model (see `demo_part1.ipynb`)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "3b245ca3",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from openai import OpenAI\n",
|
||
"from dotenv import load_dotenv\n",
|
||
"\n",
|
||
"# Please create a file named .env and place your\n",
|
||
"# OpenAI key as OPENAI_API_KEY=xxx\n",
|
||
"load_dotenv() \n",
|
||
"\n",
|
||
"client = OpenAI(api_key=os.environ.get(\"OPENAI_API_KEY\"))\n",
|
||
"\n",
|
||
"response = client.audio.speech.create(\n",
|
||
" model=\"tts-1\",\n",
|
||
" voice=\"nova\",\n",
|
||
" input=\"This audio will be used to extract the base speaker tone color embedding. \" + \\\n",
|
||
" \"Typically a very short audio should be sufficient, but increasing the audio \" + \\\n",
|
||
" \"length will also improve the output audio quality.\"\n",
|
||
")\n",
|
||
"\n",
|
||
"response.stream_to_file(f\"{output_dir}/openai_source_output.mp3\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "7f67740c",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Obtain Tone Color Embedding"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f8add279",
|
||
"metadata": {},
|
||
"source": [
|
||
"The `source_se` is the tone color embedding of the base speaker. \n",
|
||
"It is an average for multiple sentences with multiple emotions\n",
|
||
"of the base speaker. We directly provide the result here but\n",
|
||
"the readers feel free to extract `source_se` by themselves."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "63ff6273",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"base_speaker = f\"{output_dir}/openai_source_output.mp3\"\n",
|
||
"source_se, audio_name = se_extractor.get_se(base_speaker, tone_color_converter, vad=True)\n",
|
||
"\n",
|
||
"reference_speaker = 'resources/example_reference.mp3' # This is the voice you want to clone\n",
|
||
"target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, vad=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a40284aa",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Inference"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "73dc1259",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Run the base speaker tts\n",
|
||
"text = [\n",
|
||
" \"MyShell is a decentralized and comprehensive platform for discovering, creating, and staking AI-native apps.\",\n",
|
||
" \"MyShell es una plataforma descentralizada y completa para descubrir, crear y apostar por aplicaciones nativas de IA.\",\n",
|
||
" \"MyShell est une plateforme décentralisée et complète pour découvrir, créer et miser sur des applications natives d'IA.\",\n",
|
||
" \"MyShell ist eine dezentralisierte und umfassende Plattform zum Entdecken, Erstellen und Staken von KI-nativen Apps.\",\n",
|
||
" \"MyShell è una piattaforma decentralizzata e completa per scoprire, creare e scommettere su app native di intelligenza artificiale.\",\n",
|
||
" \"MyShellは、AIネイティブアプリの発見、作成、およびステーキングのための分散型かつ包括的なプラットフォームです。\",\n",
|
||
" \"MyShell — это децентрализованная и всеобъемлющая платформа для обнаружения, создания и стейкинга AI-ориентированных приложений.\",\n",
|
||
" \"MyShell هي منصة لامركزية وشاملة لاكتشاف وإنشاء ورهان تطبيقات الذكاء الاصطناعي الأصلية.\",\n",
|
||
" \"MyShell是一个去中心化且全面的平台,用于发现、创建和投资AI原生应用程序。\",\n",
|
||
" \"MyShell एक विकेंद्रीकृत और व्यापक मंच है, जो AI-मूल ऐप्स की खोज, सृजन और स्टेकिंग के लिए है।\",\n",
|
||
" \"MyShell é uma plataforma descentralizada e abrangente para descobrir, criar e apostar em aplicativos nativos de IA.\"\n",
|
||
"]\n",
|
||
"src_path = f'{output_dir}/tmp.wav'\n",
|
||
"\n",
|
||
"for i, t in enumerate(text):\n",
|
||
"\n",
|
||
" response = client.audio.speech.create(\n",
|
||
" model=\"tts-1\",\n",
|
||
" voice=\"nova\",\n",
|
||
" input=t,\n",
|
||
" )\n",
|
||
"\n",
|
||
" response.stream_to_file(src_path)\n",
|
||
"\n",
|
||
" save_path = f'{output_dir}/output_crosslingual_{i}.wav'\n",
|
||
"\n",
|
||
" # Run the tone color converter\n",
|
||
" encode_message = \"@MyShell\"\n",
|
||
" tone_color_converter.convert(\n",
|
||
" audio_src_path=src_path, \n",
|
||
" src_se=source_se, \n",
|
||
" tgt_se=target_se, \n",
|
||
" output_path=save_path,\n",
|
||
" message=encode_message)"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"interpreter": {
|
||
"hash": "9d70c38e1c0b038dbdffdaa4f8bfa1f6767c43760905c87a9fbe7800d18c6c35"
|
||
},
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.9.18"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|