mirror of
https://github.com/myshell-ai/OpenVoice
synced 2024-11-22 06:59:14 +00:00
41aaecdceb
- Moves all core functionality files to the package "openvoice"; - Adjusts all inner package references to the new format; - Adds "setup.py" file following the specification present on "https://packaging.python.org/en/latest/guides/distributing-packages-using-setuptools"; BREAKING CHANGE: All the core functionality files were moved to the "openvoice" package
183 lines
6.0 KiB
Python
183 lines
6.0 KiB
Python
import torch
|
|
import torch.utils.data
|
|
from librosa.filters import mel as librosa_mel_fn
|
|
|
|
MAX_WAV_VALUE = 32768.0
|
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
|
"""
|
|
PARAMS
|
|
------
|
|
C: compression factor
|
|
"""
|
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1):
|
|
"""
|
|
PARAMS
|
|
------
|
|
C: compression factor used to compress
|
|
"""
|
|
return torch.exp(x) / C
|
|
|
|
|
|
def spectral_normalize_torch(magnitudes):
|
|
output = dynamic_range_compression_torch(magnitudes)
|
|
return output
|
|
|
|
|
|
def spectral_de_normalize_torch(magnitudes):
|
|
output = dynamic_range_decompression_torch(magnitudes)
|
|
return output
|
|
|
|
|
|
mel_basis = {}
|
|
hann_window = {}
|
|
|
|
|
|
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
|
if torch.min(y) < -1.1:
|
|
print("min value is ", torch.min(y))
|
|
if torch.max(y) > 1.1:
|
|
print("max value is ", torch.max(y))
|
|
|
|
global hann_window
|
|
dtype_device = str(y.dtype) + "_" + str(y.device)
|
|
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
|
if wnsize_dtype_device not in hann_window:
|
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
|
dtype=y.dtype, device=y.device
|
|
)
|
|
|
|
y = torch.nn.functional.pad(
|
|
y.unsqueeze(1),
|
|
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
|
mode="reflect",
|
|
)
|
|
y = y.squeeze(1)
|
|
|
|
spec = torch.stft(
|
|
y,
|
|
n_fft,
|
|
hop_length=hop_size,
|
|
win_length=win_size,
|
|
window=hann_window[wnsize_dtype_device],
|
|
center=center,
|
|
pad_mode="reflect",
|
|
normalized=False,
|
|
onesided=True,
|
|
return_complex=False,
|
|
)
|
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
|
return spec
|
|
|
|
|
|
def spectrogram_torch_conv(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
|
# if torch.min(y) < -1.:
|
|
# print('min value is ', torch.min(y))
|
|
# if torch.max(y) > 1.:
|
|
# print('max value is ', torch.max(y))
|
|
|
|
global hann_window
|
|
dtype_device = str(y.dtype) + '_' + str(y.device)
|
|
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
|
if wnsize_dtype_device not in hann_window:
|
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
|
|
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
|
|
|
# ******************** original ************************#
|
|
# y = y.squeeze(1)
|
|
# spec1 = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
|
# center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
|
|
|
# ******************** ConvSTFT ************************#
|
|
freq_cutoff = n_fft // 2 + 1
|
|
fourier_basis = torch.view_as_real(torch.fft.fft(torch.eye(n_fft)))
|
|
forward_basis = fourier_basis[:freq_cutoff].permute(2, 0, 1).reshape(-1, 1, fourier_basis.shape[1])
|
|
forward_basis = forward_basis * torch.as_tensor(librosa.util.pad_center(torch.hann_window(win_size), size=n_fft)).float()
|
|
|
|
import torch.nn.functional as F
|
|
|
|
# if center:
|
|
# signal = F.pad(y[:, None, None, :], (n_fft // 2, n_fft // 2, 0, 0), mode = 'reflect').squeeze(1)
|
|
assert center is False
|
|
|
|
forward_transform_squared = F.conv1d(y, forward_basis.to(y.device), stride = hop_size)
|
|
spec2 = torch.stack([forward_transform_squared[:, :freq_cutoff, :], forward_transform_squared[:, freq_cutoff:, :]], dim = -1)
|
|
|
|
|
|
# ******************** Verification ************************#
|
|
spec1 = torch.stft(y.squeeze(1), n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
|
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
|
assert torch.allclose(spec1, spec2, atol=1e-4)
|
|
|
|
spec = torch.sqrt(spec2.pow(2).sum(-1) + 1e-6)
|
|
return spec
|
|
|
|
|
|
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
|
global mel_basis
|
|
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
|
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
|
if fmax_dtype_device not in mel_basis:
|
|
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
|
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
|
dtype=spec.dtype, device=spec.device
|
|
)
|
|
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
|
spec = spectral_normalize_torch(spec)
|
|
return spec
|
|
|
|
|
|
def mel_spectrogram_torch(
|
|
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
|
):
|
|
if torch.min(y) < -1.0:
|
|
print("min value is ", torch.min(y))
|
|
if torch.max(y) > 1.0:
|
|
print("max value is ", torch.max(y))
|
|
|
|
global mel_basis, hann_window
|
|
dtype_device = str(y.dtype) + "_" + str(y.device)
|
|
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
|
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
|
if fmax_dtype_device not in mel_basis:
|
|
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
|
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
|
dtype=y.dtype, device=y.device
|
|
)
|
|
if wnsize_dtype_device not in hann_window:
|
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
|
dtype=y.dtype, device=y.device
|
|
)
|
|
|
|
y = torch.nn.functional.pad(
|
|
y.unsqueeze(1),
|
|
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
|
mode="reflect",
|
|
)
|
|
y = y.squeeze(1)
|
|
|
|
spec = torch.stft(
|
|
y,
|
|
n_fft,
|
|
hop_length=hop_size,
|
|
win_length=win_size,
|
|
window=hann_window[wnsize_dtype_device],
|
|
center=center,
|
|
pad_mode="reflect",
|
|
normalized=False,
|
|
onesided=True,
|
|
return_complex=False,
|
|
)
|
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
|
|
|
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
|
spec = spectral_normalize_torch(spec)
|
|
|
|
return spec |