dragonfly/tools/cache_testing.py

117 lines
4.3 KiB
Python
Raw Normal View History

#!/usr/bin/env python
import redis
import argparse
from urllib.parse import urlparse
import numpy as np
'''
Run Cache Testing.
This tool performs cache testing for Dragonfly
by calling the `incrby` function on a constrained set
of items, as defined by the user. Additionally, it
distributes the frequency of `incrby` calls for each
item based on a Zipfian distribution (with alpha values
between 0 and 1 being representative of real-life cache
load scenarios)
'''
def rand_zipf_generator(n, alpha, count, pipeline):
"""
n: The upper bound of the values to generate a zipfian distribution over
(n = 30 would generate a distribution of given alpha from values 1 to 30)
alpha: The alpha parameter to be used while creating the Zipfian distribution
num_samples: The total number of samples to generate over the Zipfian distribution
This is a generator that yields up to count values using a generator.
"""
# Calculate Zeta values from 1 to n:
tmp = np.power( np.arange(1, n+1), -alpha )
zeta = np.r_[0.0, np.cumsum(tmp)]
# Store the translation map:
distMap = [x / zeta[-1] for x in zeta]
if pipeline == 0:
# Generate an array of uniform 0-1 pseudo-random values:
u = np.random.random(count)
# bisect them with distMap
v = np.searchsorted(distMap, u)
samples = [t-1 for t in v]
for sample in samples:
yield sample
else:
current_count = 0
while current_count < count:
# Generate an array of uniform 0-1 pseudo-random values, of the pipeline length:
u = np.random.random(pipeline)
# bisect them with distMap
v = np.searchsorted(distMap, u)
samples = [t-1 for t in v]
yield samples
current_count += len(samples)
def update_stats(r, hits, misses, value_index, total_count):
"""
A void function that uses terminal control sequences
to update hit/miss ratio stats for the user
while the testing tool runs.
"""
percent_complete = (value_index + 1) / total_count
# Use the terminal control sequence to move the cursor to the beginning of the line
print("\r", end="")
# Print the loading bar and current hit rate
print("[{}{}] {:.0f}%, current hit rate: {:.6f}%".format("#" * int(percent_complete * 20), " " * int(20 - percent_complete * 20), percent_complete * 100, (hits / (hits + misses)) * 100), end="")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Cache Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-c', '--count', type=int, default=100000, help='total number of incrby operations')
parser.add_argument('-u', '--uri', type=str, default='redis://localhost:6379', help='Redis server URI')
parser.add_argument('-a', '--alpha', type=int, default=1.0, help='alpha value being used for the Zipf distribution')
parser.add_argument('-n', '--number', type=int, default=30, help='the number of values to be used in the distribution')
parser.add_argument('-d', '--length', type=int, default=10, help='the length of the values to be used in the distribution')
parser.add_argument('-p', '--pipeline', type=int, default=0, help='pipeline size')
args = parser.parse_args()
uri = urlparse(args.uri)
r = redis.StrictRedis(host=uri.hostname, port=uri.port)
misses = 0
hits = 0
distribution_keys_generator = rand_zipf_generator(args.number, args.alpha, args.count, args.pipeline)
if args.pipeline == 0:
for idx, key in enumerate(distribution_keys_generator):
result = r.set(str(key), 'x' * args.length, nx=True)
if result:
misses += 1
else:
hits += 1
if idx % 50 == 0:
update_stats(r, hits, misses, idx, args.count)
else:
total_count = 0
for idx, keys in enumerate(distribution_keys_generator):
total_count += len(keys)
p = r.pipeline(transaction=False)
for key in keys:
p.set(str(key), 'x' * args.length, nx=True)
responses = p.execute()
for resp in responses:
if resp:
misses += 1
else:
hits += 1
if idx % 20 == 0:
update_stats(r, hits, misses, total_count, args.count)