insomnia/app/sync/crypt.js
Gregory Schier 6b68122356 Some small improvements to things (#114)
* Fixed duplication kve bug

* Slimmed down mimetypes

* Fixed a crypt and CSS bug

* Update document title with request and fix sync mode dialog

* Updated kve styles
2017-03-12 01:03:57 -08:00

343 lines
9.1 KiB
JavaScript

import HKDF from 'hkdf';
import srp from 'srp-js';
import * as forge from 'node-forge';
const DEFAULT_BYTE_LENGTH = 32;
const DEFAULT_PBKDF2_ITERATIONS = 1E5; // 100,000
/**
* Generate hex signing key used for AES encryption
*
* @param pass
* @param email
* @param salt
*/
export async function deriveKey (pass, email, salt) {
const combinedSalt = await _hkdfSalt(salt, email);
return _pbkdf2Passphrase(pass, combinedSalt);
}
/**
* Encrypt with RSA256 public key
*
* @param publicKeyJWK
* @param plaintext
* @return String
*/
export function encryptRSAWithJWK (publicKeyJWK, plaintext) {
if (publicKeyJWK.alg !== 'RSA-OAEP-256') {
throw new Error('Public key algorithm was not RSA-OAEP-256');
} else if (publicKeyJWK.kty !== 'RSA') {
throw new Error('Public key type was not RSA');
} else if (!publicKeyJWK.key_ops.find(o => o === 'encrypt')) {
throw new Error('Public key does not have "encrypt" op');
}
const encodedPlaintext = encodeURIComponent(plaintext);
const n = _b64UrlToBigInt(publicKeyJWK.n);
const e = _b64UrlToBigInt(publicKeyJWK.e);
const publicKey = forge.rsa.setPublicKey(n, e);
const encrypted = publicKey.encrypt(encodedPlaintext, 'RSA-OAEP', {
md: forge.md.sha256.create()
});
return forge.util.bytesToHex(encrypted);
}
export function decryptRSAWithJWK (privateJWK, encryptedBlob) {
const n = _b64UrlToBigInt(privateJWK.n);
const e = _b64UrlToBigInt(privateJWK.e);
const d = _b64UrlToBigInt(privateJWK.d);
const p = _b64UrlToBigInt(privateJWK.p);
const q = _b64UrlToBigInt(privateJWK.q);
const dP = _b64UrlToBigInt(privateJWK.dp);
const dQ = _b64UrlToBigInt(privateJWK.dq);
const qInv = _b64UrlToBigInt(privateJWK.qi);
const privateKey = forge.rsa.setPrivateKey(n, e, d, p, q, dP, dQ, qInv);
const bytes = forge.util.hexToBytes(encryptedBlob);
const decrypted = privateKey.decrypt(bytes, 'RSA-OAEP', {
md: forge.md.sha256.create()
});
return decodeURIComponent(decrypted);
}
export function recryptRSAWithJWK (privateJWK, publicJWK, encryptedBlob) {
const decrypted = decryptRSAWithJWK(privateJWK, encryptedBlob);
return encryptRSAWithJWK(publicJWK, decrypted);
}
/**
* Encrypt data using symmetric key
*
* @param jwkOrKey JWK or string representing symmetric key
* @param plaintext string of data to encrypt
* @param additionalData any additional public data to attach
* @returns {{iv, t, d, ad}}
*/
export function encryptAES (jwkOrKey, plaintext, additionalData = '') {
// TODO: Add assertion checks for JWK
const rawKey = typeof jwkOrKey === 'string' ? jwkOrKey : _b64UrlToHex(jwkOrKey.k);
const key = forge.util.hexToBytes(rawKey);
const iv = forge.random.getBytesSync(12);
const cipher = forge.cipher.createCipher('AES-GCM', key);
// Plaintext could contain weird unicode, so we have to encode that
const encodedPlaintext = encodeURIComponent(plaintext);
cipher.start({additionalData, iv, tagLength: 128});
cipher.update(forge.util.createBuffer(encodedPlaintext));
cipher.finish();
return {
iv: forge.util.bytesToHex(iv),
t: forge.util.bytesToHex(cipher.mode.tag),
d: forge.util.bytesToHex(cipher.output),
ad: forge.util.bytesToHex(additionalData)
};
}
/**
* Decrypt AES using a key
*
* @param jwkOrKey JWK or string representing symmetric key
* @param message
* @returns String
*/
export function decryptAES (jwkOrKey, message) {
// TODO: Add assertion checks for JWK
const rawKey = typeof jwkOrKey === 'string' ? jwkOrKey : _b64UrlToHex(jwkOrKey.k);
const key = forge.util.hexToBytes(rawKey);
// ~~~~~~~~~~~~~~~~~~~~ //
// Decrypt with AES-GCM //
// ~~~~~~~~~~~~~~~~~~~~ //
const decipher = forge.cipher.createDecipher('AES-GCM', key);
decipher.start({
iv: forge.util.hexToBytes(message.iv),
tagLength: message.t.length * 4,
tag: forge.util.hexToBytes(message.t),
additionalData: forge.util.hexToBytes(message.ad)
});
decipher.update(forge.util.createBuffer(forge.util.hexToBytes(message.d)));
if (decipher.finish()) {
return decodeURIComponent(decipher.output.toString());
} else {
throw new Error('Failed to decrypt data');
}
}
/**
* Generate a random salt in hex
*
* @returns {string}
*/
export function getRandomHex (bytes = DEFAULT_BYTE_LENGTH) {
return forge.util.bytesToHex(forge.random.getBytesSync(bytes));
}
/**
* Generate a random account Id
*
* @returns {string}
*/
export function generateAccountId () {
return `act_${getRandomHex(DEFAULT_BYTE_LENGTH)}`;
}
/**
* Generate a random key
*
* @returns {Promise}
*/
export function srpGenKey () {
return new Promise((resolve, reject) => {
srp.genKey((err, secret1Buffer) => {
if (err) {
reject(err);
} else {
resolve(secret1Buffer.toString('hex'));
}
});
});
}
/**
* Generate a random AES256 key for use with symmetric encryption
*/
export async function generateAES256Key () {
const c = window.crypto;
const subtle = c ? c.subtle || c.webkitSubtle : null;
if (subtle) {
// console.log('-- Using Native AES Key Generation --');
const key = await subtle.generateKey(
{name: 'AES-GCM', length: 256},
true,
['encrypt', 'decrypt']
);
return subtle.exportKey('jwk', key);
} else {
// console.log('-- Using Fallback Forge AES Key Generation --');
const key = forge.util.bytesToHex(forge.random.getBytesSync(32));
return {
kty: 'oct',
alg: 'A256GCM',
ext: true,
key_ops: ['encrypt', 'decrypt'],
k: _hexToB64Url(key)
};
}
}
/**
* Generate RSA keypair JWK with 2048 bits and exponent 0x10001
*
* @returns Object
*/
export async function generateKeyPairJWK () {
// NOTE: Safari has crypto.webkitSubtle, but it does not support RSA-OAEP-SHA256
const subtle = window.crypto && window.crypto.subtle;
if (subtle) {
// console.log('-- Using Native RSA Generation --');
const pair = await subtle.generateKey(
{
name: 'RSA-OAEP',
publicExponent: new Uint8Array([1, 0, 1]),
modulusLength: 2048,
hash: 'SHA-256'
},
true,
['encrypt', 'decrypt']
);
return {
publicKey: await subtle.exportKey('jwk', pair.publicKey),
privateKey: await subtle.exportKey('jwk', pair.privateKey)
};
} else {
// console.log('-- Using Forge RSA Generation --');
const pair = forge.pki.rsa.generateKeyPair({bits: 2048, e: 0x10001});
const privateKey = {
alg: 'RSA-OAEP-256',
kty: 'RSA',
key_ops: ['decrypt'],
ext: true,
d: _bigIntToB64Url(pair.privateKey.d),
dp: _bigIntToB64Url(pair.privateKey.dP),
dq: _bigIntToB64Url(pair.privateKey.dQ),
e: _bigIntToB64Url(pair.privateKey.e),
n: _bigIntToB64Url(pair.privateKey.n),
p: _bigIntToB64Url(pair.privateKey.p),
q: _bigIntToB64Url(pair.privateKey.q),
qi: _bigIntToB64Url(pair.privateKey.qInv)
};
const publicKey = {
alg: 'RSA-OAEP-256',
kty: 'RSA',
key_ops: ['encrypt'],
e: _bigIntToB64Url(pair.publicKey.e),
n: _bigIntToB64Url(pair.publicKey.n)
};
return {privateKey, publicKey};
}
}
// ~~~~~~~~~~~~~~~~ //
// Helper Functions //
// ~~~~~~~~~~~~~~~~ //
/**
* Combine email and raw salt into usable salt
*
* @param rawSalt
* @param rawEmail
* @returns {Promise}
*/
function _hkdfSalt (rawSalt, rawEmail) {
return new Promise(resolve => {
const hkdf = new HKDF('sha256', rawSalt, rawEmail);
hkdf.derive('', DEFAULT_BYTE_LENGTH, buffer => resolve(buffer.toString('hex')));
});
}
/**
* Convert a JSBN BigInteger to a URL-safe version of base64 encoding. This
* should only be used for encoding JWKs
*
* @param n BigInteger
* @returns {string}
*/
function _bigIntToB64Url (n) {
return _hexToB64Url(n.toString(16));
}
function _hexToB64Url (h) {
const bytes = forge.util.hexToBytes(h);
return window.btoa(bytes)
.replace(/=/g, '')
.replace(/\+/g, '-')
.replace(/\//g, '_');
}
function _b64UrlToBigInt (s) {
return new forge.jsbn.BigInteger(_b64UrlToHex(s), 16);
}
function _b64UrlToHex (s) {
const b64 = s.replace(/-/g, '+').replace(/_/g, '/');
return forge.util.bytesToHex(window.atob(b64));
}
/**
* Derive key from password
*
* @param passphrase
* @param salt hex representation of salt
*/
async function _pbkdf2Passphrase (passphrase, salt) {
if (window.crypto && window.crypto.subtle) {
// console.log('-- Using native PBKDF2 --');
const k = await window.crypto.subtle.importKey(
'raw',
Buffer.from(passphrase, 'utf8'),
{name: 'PBKDF2'},
false,
['deriveBits']
);
const algo = {
name: 'PBKDF2',
salt: new Buffer(salt, 'hex'),
iterations: DEFAULT_PBKDF2_ITERATIONS,
hash: 'SHA-256'
};
const derivedKeyRaw = await window.crypto.subtle.deriveBits(algo, k, DEFAULT_BYTE_LENGTH * 8);
return new Buffer(derivedKeyRaw).toString('hex');
} else {
// console.log('-- Using Forge PBKDF2 --');
const derivedKeyRaw = forge.pkcs5.pbkdf2(
passphrase,
forge.util.hexToBytes(salt),
DEFAULT_PBKDF2_ITERATIONS,
DEFAULT_BYTE_LENGTH,
forge.md.sha256.create()
);
return forge.util.bytesToHex(derivedKeyRaw);
}
}