2008-08-17 15:28:12 +00:00
|
|
|
/*
|
|
|
|
* Principal component analysis
|
|
|
|
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
|
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with this library; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @file pca.c
|
|
|
|
* Principal component analysis
|
|
|
|
*/
|
|
|
|
|
2008-08-17 15:32:13 +00:00
|
|
|
#include "common.h"
|
2008-08-17 15:28:12 +00:00
|
|
|
#include "pca.h"
|
|
|
|
|
|
|
|
int ff_pca_init(PCA *pca, int n){
|
|
|
|
if(n<=0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
pca->n= n;
|
|
|
|
pca->count=0;
|
|
|
|
pca->covariance= av_mallocz(sizeof(double)*n*n);
|
|
|
|
pca->mean= av_mallocz(sizeof(double)*n);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_pca_free(PCA *pca){
|
|
|
|
av_freep(&pca->covariance);
|
|
|
|
av_freep(&pca->mean);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_pca_add(PCA *pca, double *v){
|
|
|
|
int i, j;
|
|
|
|
const int n= pca->n;
|
|
|
|
|
|
|
|
for(i=0; i<n; i++){
|
|
|
|
pca->mean[i] += v[i];
|
|
|
|
for(j=i; j<n; j++)
|
|
|
|
pca->covariance[j + i*n] += v[i]*v[j];
|
|
|
|
}
|
|
|
|
pca->count++;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){
|
|
|
|
int i, j, k, pass;
|
|
|
|
const int n= pca->n;
|
|
|
|
double z[n];
|
|
|
|
|
|
|
|
memset(eigenvector, 0, sizeof(double)*n*n);
|
|
|
|
|
|
|
|
for(j=0; j<n; j++){
|
|
|
|
pca->mean[j] /= pca->count;
|
|
|
|
eigenvector[j + j*n] = 1.0;
|
|
|
|
for(i=0; i<=j; i++){
|
|
|
|
pca->covariance[j + i*n] /= pca->count;
|
|
|
|
pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j];
|
|
|
|
pca->covariance[i + j*n] = pca->covariance[j + i*n];
|
|
|
|
}
|
|
|
|
eigenvalue[j]= pca->covariance[j + j*n];
|
|
|
|
z[j]= 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
for(pass=0; pass < 50; pass++){
|
|
|
|
double sum=0;
|
|
|
|
|
|
|
|
for(i=0; i<n; i++)
|
|
|
|
for(j=i+1; j<n; j++)
|
|
|
|
sum += fabs(pca->covariance[j + i*n]);
|
|
|
|
|
|
|
|
if(sum == 0){
|
|
|
|
for(i=0; i<n; i++){
|
|
|
|
double maxvalue= -1;
|
|
|
|
for(j=i; j<n; j++){
|
|
|
|
if(eigenvalue[j] > maxvalue){
|
|
|
|
maxvalue= eigenvalue[j];
|
|
|
|
k= j;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
eigenvalue[k]= eigenvalue[i];
|
|
|
|
eigenvalue[i]= maxvalue;
|
|
|
|
for(j=0; j<n; j++){
|
|
|
|
double tmp= eigenvector[k + j*n];
|
|
|
|
eigenvector[k + j*n]= eigenvector[i + j*n];
|
|
|
|
eigenvector[i + j*n]= tmp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return pass;
|
|
|
|
}
|
|
|
|
|
|
|
|
for(i=0; i<n; i++){
|
|
|
|
for(j=i+1; j<n; j++){
|
|
|
|
double covar= pca->covariance[j + i*n];
|
|
|
|
double t,c,s,tau,theta, h;
|
|
|
|
|
|
|
|
if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3
|
|
|
|
continue;
|
|
|
|
if(fabs(covar) == 0.0) //FIXME shouldnt be needed
|
|
|
|
continue;
|
|
|
|
if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){
|
|
|
|
pca->covariance[j + i*n]=0.0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]);
|
|
|
|
theta=0.5*h/covar;
|
|
|
|
t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));
|
|
|
|
if(theta < 0.0) t = -t;
|
|
|
|
|
|
|
|
c=1.0/sqrt(1+t*t);
|
|
|
|
s=t*c;
|
|
|
|
tau=s/(1.0+c);
|
|
|
|
z[i] -= t*covar;
|
|
|
|
z[j] += t*covar;
|
|
|
|
|
2008-08-17 15:35:55 +00:00
|
|
|
#define ROTATE(a,i,j,k,l) {\
|
2008-08-17 15:28:12 +00:00
|
|
|
double g=a[j + i*n];\
|
|
|
|
double h=a[l + k*n];\
|
|
|
|
a[j + i*n]=g-s*(h+g*tau);\
|
2008-08-17 15:35:55 +00:00
|
|
|
a[l + k*n]=h+s*(g-h*tau); }
|
2008-08-17 15:28:12 +00:00
|
|
|
for(k=0; k<n; k++) {
|
|
|
|
if(k!=i && k!=j){
|
|
|
|
ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j))
|
|
|
|
}
|
|
|
|
ROTATE(eigenvector,k,i,k,j)
|
|
|
|
}
|
|
|
|
pca->covariance[j + i*n]=0.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (i=0; i<n; i++) {
|
|
|
|
eigenvalue[i] += z[i];
|
|
|
|
z[i]=0.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2008-08-17 15:33:17 +00:00
|
|
|
#ifdef TEST
|
2008-08-17 15:28:12 +00:00
|
|
|
|
|
|
|
#undef printf
|
2008-08-17 15:32:50 +00:00
|
|
|
#undef random
|
2008-08-17 15:28:12 +00:00
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
int main(){
|
|
|
|
PCA pca;
|
|
|
|
int i, j, k;
|
|
|
|
#define LEN 8
|
|
|
|
double eigenvector[LEN*LEN];
|
|
|
|
double eigenvalue[LEN];
|
|
|
|
|
|
|
|
ff_pca_init(&pca, LEN);
|
|
|
|
|
|
|
|
for(i=0; i<9000000; i++){
|
|
|
|
double v[2*LEN+100];
|
|
|
|
double sum=0;
|
|
|
|
int pos= random()%LEN;
|
|
|
|
int v2= (random()%101) - 50;
|
|
|
|
v[0]= (random()%101) - 50;
|
|
|
|
for(j=1; j<8; j++){
|
|
|
|
if(j<=pos) v[j]= v[0];
|
|
|
|
else v[j]= v2;
|
|
|
|
sum += v[j];
|
|
|
|
}
|
|
|
|
/* for(j=0; j<LEN; j++){
|
|
|
|
v[j] -= v[pos];
|
|
|
|
}*/
|
|
|
|
// sum += random()%10;
|
|
|
|
/* for(j=0; j<LEN; j++){
|
|
|
|
v[j] -= sum/LEN;
|
|
|
|
}*/
|
|
|
|
// lbt1(v+100,v+100,LEN);
|
|
|
|
ff_pca_add(&pca, v);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ff_pca(&pca, eigenvector, eigenvalue);
|
|
|
|
for(i=0; i<LEN; i++){
|
|
|
|
pca.count= 1;
|
|
|
|
pca.mean[i]= 0;
|
|
|
|
|
|
|
|
// (0.5^|x|)^2 = 0.5^2|x| = 0.25^|x|
|
|
|
|
|
|
|
|
|
|
|
|
// pca.covariance[i + i*LEN]= pow(0.5, fabs
|
|
|
|
for(j=i; j<LEN; j++){
|
|
|
|
printf("%f ", pca.covariance[i + j*LEN]);
|
|
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
for(i=0; i<LEN; i++){
|
|
|
|
double v[LEN];
|
|
|
|
double error=0;
|
|
|
|
memset(v, 0, sizeof(v));
|
|
|
|
for(j=0; j<LEN; j++){
|
|
|
|
for(k=0; k<LEN; k++){
|
|
|
|
v[j] += pca.covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN];
|
|
|
|
}
|
|
|
|
v[j] /= eigenvalue[i];
|
|
|
|
error += fabs(v[j] - eigenvector[i + j*LEN]);
|
|
|
|
}
|
|
|
|
printf("%f ", error);
|
|
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
#endif
|
|
|
|
for(i=0; i<LEN; i++){
|
|
|
|
for(j=0; j<LEN; j++){
|
|
|
|
printf("%9.6f ", eigenvector[i + j*LEN]);
|
|
|
|
}
|
|
|
|
printf(" %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|