/* * Copyright (C) 2015 Pedro Arthur * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/mem.h" #include "swscale_internal.h" static void free_lines(SwsSlice *s) { int i; for (i = 0; i < 2; ++i) { int n = s->plane[i].available_lines; int j; for (j = 0; j < n; ++j) { av_freep(&s->plane[i].line[j]); if (s->is_ring) s->plane[i].line[j+n] = NULL; } } for (i = 0; i < 4; ++i) memset(s->plane[i].line, 0, sizeof(uint8_t*) * s->plane[i].available_lines * (s->is_ring ? 3 : 1)); s->should_free_lines = 0; } /* slice lines contains extra bytes for vectorial code thus @size is the allocated memory size and @width is the number of pixels */ static int alloc_lines(SwsSlice *s, int size, int width) { int i; int idx[2] = {3, 2}; s->should_free_lines = 1; s->width = width; for (i = 0; i < 2; ++i) { int n = s->plane[i].available_lines; int j; int ii = idx[i]; av_assert0(n == s->plane[ii].available_lines); for (j = 0; j < n; ++j) { // chroma plane line U and V are expected to be contiguous in memory // by mmx vertical scaler code s->plane[i].line[j] = av_malloc(size * 2 + 32); if (!s->plane[i].line[j]) { free_lines(s); return AVERROR(ENOMEM); } s->plane[ii].line[j] = s->plane[i].line[j] + size + 16; if (s->is_ring) { s->plane[i].line[j+n] = s->plane[i].line[j]; s->plane[ii].line[j+n] = s->plane[ii].line[j]; } } } return 0; } static int alloc_slice(SwsSlice *s, enum AVPixelFormat fmt, int lumLines, int chrLines, int h_sub_sample, int v_sub_sample, int ring) { int i; int size[4] = { lumLines, chrLines, chrLines, lumLines }; s->h_chr_sub_sample = h_sub_sample; s->v_chr_sub_sample = v_sub_sample; s->fmt = fmt; s->is_ring = ring; s->should_free_lines = 0; for (i = 0; i < 4; ++i) { int n = size[i] * ( ring == 0 ? 1 : 3); s->plane[i].line = av_calloc(n, sizeof(*s->plane[i].line)); if (!s->plane[i].line) return AVERROR(ENOMEM); s->plane[i].tmp = ring ? s->plane[i].line + size[i] * 2 : NULL; s->plane[i].available_lines = size[i]; s->plane[i].sliceY = 0; s->plane[i].sliceH = 0; } return 0; } static void free_slice(SwsSlice *s) { int i; if (s) { if (s->should_free_lines) free_lines(s); for (i = 0; i < 4; ++i) { av_freep(&s->plane[i].line); s->plane[i].tmp = NULL; } } } int ff_rotate_slice(SwsSlice *s, int lum, int chr) { int i; if (lum) { for (i = 0; i < 4; i+=3) { int n = s->plane[i].available_lines; int l = lum - s->plane[i].sliceY; if (l >= n * 2) { s->plane[i].sliceY += n; s->plane[i].sliceH -= n; } } } if (chr) { for (i = 1; i < 3; ++i) { int n = s->plane[i].available_lines; int l = chr - s->plane[i].sliceY; if (l >= n * 2) { s->plane[i].sliceY += n; s->plane[i].sliceH -= n; } } } return 0; } int ff_init_slice_from_src(SwsSlice * s, uint8_t *const src[4], const int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative) { int i = 0; const int start[4] = {lumY, chrY, chrY, lumY}; const int end[4] = {lumY +lumH, chrY + chrH, chrY + chrH, lumY + lumH}; s->width = srcW; for (i = 0; i < 4 && src[i] != NULL; ++i) { uint8_t *const src_i = src[i] + (relative ? 0 : start[i]) * stride[i]; int j; int first = s->plane[i].sliceY; int n = s->plane[i].available_lines; int lines = end[i] - start[i]; int tot_lines = end[i] - first; if (start[i] >= first && n >= tot_lines) { s->plane[i].sliceH = FFMAX(tot_lines, s->plane[i].sliceH); for (j = 0; j < lines; j+= 1) s->plane[i].line[start[i] - first + j] = src_i + j * stride[i]; } else { s->plane[i].sliceY = start[i]; lines = lines > n ? n : lines; s->plane[i].sliceH = lines; for (j = 0; j < lines; j+= 1) s->plane[i].line[j] = src_i + j * stride[i]; } } return 0; } static void fill_ones(SwsSlice *s, int n, int bpc) { int i, j, k, size, end; for (i = 0; i < 4; ++i) { size = s->plane[i].available_lines; for (j = 0; j < size; ++j) { if (bpc == 16) { end = (n>>1) + 1; for (k = 0; k < end; ++k) ((int32_t*)(s->plane[i].line[j]))[k] = 1<<18; } else if (bpc == 32) { end = (n>>2) + 1; for (k = 0; k < end; ++k) ((int64_t*)(s->plane[i].line[j]))[k] = 1LL<<34; } else { end = n + 1; for (k = 0; k < end; ++k) ((int16_t*)(s->plane[i].line[j]))[k] = 1<<14; } } } } /* Calculates the minimum ring buffer size, it should be able to store vFilterSize more n lines where n is the max difference between each adjacent slice which outputs a line. The n lines are needed only when there is not enough src lines to output a single dst line, then we should buffer these lines to process them on the next call to scale. */ static void get_min_buffer_size(SwsContext *c, int *out_lum_size, int *out_chr_size) { int lumY; int dstH = c->dstH; int chrDstH = c->chrDstH; int *lumFilterPos = c->vLumFilterPos; int *chrFilterPos = c->vChrFilterPos; int lumFilterSize = c->vLumFilterSize; int chrFilterSize = c->vChrFilterSize; int chrSubSample = c->chrSrcVSubSample; *out_lum_size = lumFilterSize; *out_chr_size = chrFilterSize; for (lumY = 0; lumY < dstH; lumY++) { int chrY = (int64_t)lumY * chrDstH / dstH; int nextSlice = FFMAX(lumFilterPos[lumY] + lumFilterSize - 1, ((chrFilterPos[chrY] + chrFilterSize - 1) << chrSubSample)); nextSlice >>= chrSubSample; nextSlice <<= chrSubSample; (*out_lum_size) = FFMAX((*out_lum_size), nextSlice - lumFilterPos[lumY]); (*out_chr_size) = FFMAX((*out_chr_size), (nextSlice >> chrSubSample) - chrFilterPos[chrY]); } } int ff_init_filters(SwsContext * c) { int i; int index; int num_ydesc; int num_cdesc; int num_vdesc = isPlanarYUV(c->dstFormat) && !isGray(c->dstFormat) ? 2 : 1; int need_lum_conv = c->lumToYV12 || c->readLumPlanar || c->alpToYV12 || c->readAlpPlanar; int need_chr_conv = c->chrToYV12 || c->readChrPlanar; int need_gamma = c->is_internal_gamma; int srcIdx, dstIdx; int dst_stride = FFALIGN(c->dstW * sizeof(int16_t) + 66, 16); uint32_t * pal = usePal(c->srcFormat) ? c->pal_yuv : (uint32_t*)c->input_rgb2yuv_table; int res = 0; int lumBufSize; int chrBufSize; get_min_buffer_size(c, &lumBufSize, &chrBufSize); lumBufSize = FFMAX(lumBufSize, c->vLumFilterSize + MAX_LINES_AHEAD); chrBufSize = FFMAX(chrBufSize, c->vChrFilterSize + MAX_LINES_AHEAD); if (c->dstBpc == 16) dst_stride <<= 1; if (c->dstBpc == 32) dst_stride <<= 2; num_ydesc = need_lum_conv ? 2 : 1; num_cdesc = need_chr_conv ? 2 : 1; c->numSlice = FFMAX(num_ydesc, num_cdesc) + 2; c->numDesc = num_ydesc + num_cdesc + num_vdesc + (need_gamma ? 2 : 0); c->descIndex[0] = num_ydesc + (need_gamma ? 1 : 0); c->descIndex[1] = num_ydesc + num_cdesc + (need_gamma ? 1 : 0); if (isFloat16(c->srcFormat)) { c->h2f_tables = av_malloc(sizeof(*c->h2f_tables)); if (!c->h2f_tables) return AVERROR(ENOMEM); ff_init_half2float_tables(c->h2f_tables); c->input_opaque = c->h2f_tables; } c->desc = av_calloc(c->numDesc, sizeof(*c->desc)); if (!c->desc) return AVERROR(ENOMEM); c->slice = av_calloc(c->numSlice, sizeof(*c->slice)); if (!c->slice) { res = AVERROR(ENOMEM); goto cleanup; } res = alloc_slice(&c->slice[0], c->srcFormat, c->srcH, c->chrSrcH, c->chrSrcHSubSample, c->chrSrcVSubSample, 0); if (res < 0) goto cleanup; for (i = 1; i < c->numSlice-2; ++i) { res = alloc_slice(&c->slice[i], c->srcFormat, lumBufSize, chrBufSize, c->chrSrcHSubSample, c->chrSrcVSubSample, 0); if (res < 0) goto cleanup; res = alloc_lines(&c->slice[i], FFALIGN(c->srcW*2+78, 16), c->srcW); if (res < 0) goto cleanup; } // horizontal scaler output res = alloc_slice(&c->slice[i], c->srcFormat, lumBufSize, chrBufSize, c->chrDstHSubSample, c->chrDstVSubSample, 1); if (res < 0) goto cleanup; res = alloc_lines(&c->slice[i], dst_stride, c->dstW); if (res < 0) goto cleanup; fill_ones(&c->slice[i], dst_stride>>1, c->dstBpc); // vertical scaler output ++i; res = alloc_slice(&c->slice[i], c->dstFormat, c->dstH, c->chrDstH, c->chrDstHSubSample, c->chrDstVSubSample, 0); if (res < 0) goto cleanup; index = 0; srcIdx = 0; dstIdx = 1; if (need_gamma) { res = ff_init_gamma_convert(c->desc + index, c->slice + srcIdx, c->inv_gamma); if (res < 0) goto cleanup; ++index; } if (need_lum_conv) { res = ff_init_desc_fmt_convert(&c->desc[index], &c->slice[srcIdx], &c->slice[dstIdx], pal); if (res < 0) goto cleanup; c->desc[index].alpha = c->needAlpha; ++index; srcIdx = dstIdx; } dstIdx = FFMAX(num_ydesc, num_cdesc); res = ff_init_desc_hscale(&c->desc[index], &c->slice[srcIdx], &c->slice[dstIdx], c->hLumFilter, c->hLumFilterPos, c->hLumFilterSize, c->lumXInc); if (res < 0) goto cleanup; c->desc[index].alpha = c->needAlpha; ++index; { srcIdx = 0; dstIdx = 1; if (need_chr_conv) { res = ff_init_desc_cfmt_convert(&c->desc[index], &c->slice[srcIdx], &c->slice[dstIdx], pal); if (res < 0) goto cleanup; ++index; srcIdx = dstIdx; } dstIdx = FFMAX(num_ydesc, num_cdesc); if (c->needs_hcscale) res = ff_init_desc_chscale(&c->desc[index], &c->slice[srcIdx], &c->slice[dstIdx], c->hChrFilter, c->hChrFilterPos, c->hChrFilterSize, c->chrXInc); else res = ff_init_desc_no_chr(&c->desc[index], &c->slice[srcIdx], &c->slice[dstIdx]); if (res < 0) goto cleanup; } ++index; { srcIdx = c->numSlice - 2; dstIdx = c->numSlice - 1; res = ff_init_vscale(c, c->desc + index, c->slice + srcIdx, c->slice + dstIdx); if (res < 0) goto cleanup; } ++index; if (need_gamma) { res = ff_init_gamma_convert(c->desc + index, c->slice + dstIdx, c->gamma); if (res < 0) goto cleanup; } return 0; cleanup: ff_free_filters(c); return res; } int ff_free_filters(SwsContext *c) { int i; if (c->desc) { for (i = 0; i < c->numDesc; ++i) av_freep(&c->desc[i].instance); av_freep(&c->desc); } if (c->slice) { for (i = 0; i < c->numSlice; ++i) free_slice(&c->slice[i]); av_freep(&c->slice); } av_freep(&c->h2f_tables); return 0; }