oneuptime/Llama/app.py

128 lines
3.0 KiB
Python

import uuid
import transformers
import torch
from fastapi import FastAPI
from pydantic import BaseModel
from contextlib import asynccontextmanager
from apscheduler.schedulers.background import BackgroundScheduler
# TODO: Store this in redis down the line.
items_pending = {}
queue = []
items_processed = {}
def job():
print("Processing queue...")
while len(queue) > 0:
# process this item.
random_id = queue.pop(0)
print(f"Processing item {random_id}")
messages = items_pending[random_id]
print(f"Messages:")
print(messages)
outputs = pipe(messages)
items_processed[random_id] = outputs
del items_pending[random_id]
print(f"Processed item {random_id}")
@asynccontextmanager
async def lifespan(app:FastAPI):
scheduler = BackgroundScheduler()
scheduler.add_job(job,'cron', second='*/5')
scheduler.start()
yield
# Declare a Pydantic model for the request body
class Prompt(BaseModel):
messages: list
# Declare a Pydantic model for the request body
class PromptResult(BaseModel):
id: str
model_path = "/app/Models/Meta-Llama-3-8B-Instruct"
pipe = transformers.pipeline(
"text-generation",
model=model_path,
# use gpu if available
device="cuda" if torch.cuda.is_available() else "cpu",
)
app = FastAPI(lifespan=lifespan)
@app.get("/")
async def root():
return {"status": "ok"}
@app.post("/prompt/")
async def create_item(prompt: Prompt):
# Log prompt to console
print(prompt)
# If not prompt then return bad request error
if not prompt:
return {"error": "Prompt is required"}
messages = prompt.messages
# Generate UUID
random_id = str(uuid.uuid4())
# add to queue
items_pending[random_id] = messages
queue.append(random_id)
# Return response
return {
"id": random_id,
"status": "queued"
}
@app.get("/queue-status/")
async def queue_status():
return {"pending": items_pending, "processed": items_processed, "queue": queue}
@app.post("/prompt-result/")
async def prompt_status(prompt_status: PromptResult):
# Log prompt status to console
print(prompt_status)
# If not prompt status then return bad request error
if not prompt_status:
return {"error": "Prompt status is required"}
# check if item is processed.
if prompt_status.id in items_processed:
return_value = {
"id": prompt_status.id,
"status": "processed",
"output": items_processed[prompt_status.id]
}
# delete from item_processed
del items_processed[prompt_status.id]
return return_value
else:
status = "not found"
if prompt_status.id in items_pending:
status = "pending"
return {
"id": prompt_status.id,
"status": status
}