tabby/experimental/eval/main.py

91 lines
2.5 KiB
Python

import sys
import argparse
import pandas as pd
import logging
from tabby_client import Client
from tabby_client.api.v1 import health
from tabby_client.api.v1 import completion
from tabby_client.models import CompletionRequest, CompletionRequest, Segments, Choice
import processing
import editdistance
import random
def valid_item(item: processing.Item):
count_body_lines = len(item.body.splitlines())
if count_body_lines > 10:
return False
return True
def scorer(label, prediction):
distance = editdistance.eval(label, prediction)
return max(0.0, 1.0 - distance / len(label))
def run_eval(args):
api = "http://localhost:8080"
client = Client(base_url=api, timeout=50)
try:
health.sync(client=client)
except:
print(f"Tabby Server is not ready, please check if '{api}' is correct.")
return
items = [
x for x in processing.items_from_filepattern(args.filepattern) if valid_item(x)
]
if len(items) > args.max_records:
random.seed(0xBADBEEF)
items = random.sample(items, args.max_records)
for item in items:
if not valid_item(item):
continue
request = CompletionRequest(
language=item.language, segments=Segments(prefix=item.prefix)
)
resp: CompletionResponse = completion.sync(client=client, json_body=request)
label = item.body
prediction = resp.choices[0].text
block_score = scorer(label, prediction)
label_lines = label.splitlines()
prediction_lines = prediction.splitlines()
if len(label_lines) > 0 and len(prediction_lines) > 0:
line_score = scorer(label_lines[0], prediction_lines[0])
yield dict(
prompt=item.prefix,
prediction=prediction,
label=label,
block_score=block_score,
line_score=line_score,
)
if __name__ == "__main__":
logging.basicConfig(stream=sys.stderr, level=logging.INFO)
parser = argparse.ArgumentParser(
description="SxS eval for tabby",
epilog="Example usage: python main.py ./tabby/dataset/data.jsonl 5 > output.jsonl",
)
parser.add_argument("filepattern", type=str, help="File pattern to dataset.")
parser.add_argument(
"max_records", type=int, help="Max number of records to be evaluated."
)
args = parser.parse_args()
logging.info("args %s", args)
df = pd.DataFrame(run_eval(args))
print(df.to_json(orient="records", lines=True))