/* Copyright 2023 Dual Tachyon * https://github.com/DualTachyon * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include // abs() #include "app/chFrScanner.h" #include "app/dtmf.h" #ifdef ENABLE_AM_FIX #include "am_fix.h" #endif #include "bitmaps.h" #include "board.h" #include "driver/bk4819.h" #include "driver/st7565.h" #include "external/printf/printf.h" #include "functions.h" #include "helper/battery.h" #include "misc.h" #include "radio.h" #include "settings.h" #include "ui/helper.h" #include "ui/inputbox.h" #include "ui/main.h" #include "ui/ui.h" center_line_t center_line = CENTER_LINE_NONE; const int8_t dBmCorrTable[7] = { -15, // band 1 -25, // band 2 -20, // band 3 -4, // band 4 -7, // band 5 -6, // band 6 -1 // band 7 }; const char *VfoStateStr[] = { [VFO_STATE_NORMAL]="", [VFO_STATE_BUSY]="BUSY", [VFO_STATE_BAT_LOW]="BAT LOW", [VFO_STATE_TX_DISABLE]="TX DISABLE", [VFO_STATE_TIMEOUT]="TIMEOUT", [VFO_STATE_ALARM]="ALARM", [VFO_STATE_VOLTAGE_HIGH]="VOLT HIGH" }; // *************************************************************************** static void DrawSmallAntennaAndBars(uint8_t *p, unsigned int level) { if(level>6) level = 6; memcpy(p, BITMAP_Antenna, ARRAY_SIZE(BITMAP_Antenna)); for(uint8_t i = 1; i <= level; i++) { char bar = (0xff << (6-i)) & 0x7F; memset(p + 2 + i*3, bar, 2); } } #if defined ENABLE_AUDIO_BAR || defined ENABLE_RSSI_BAR static void DrawLevelBar(uint8_t xpos, uint8_t line, uint8_t level) { const char hollowBar[] = { 0b01111111, 0b01000001, 0b01000001, 0b01111111 }; uint8_t *p_line = gFrameBuffer[line]; level = MIN(level, 13); for(uint8_t i = 0; i < level; i++) { if(i < 9) { for(uint8_t j = 0; j < 4; j++) p_line[xpos + i * 5 + j] = (~(0x7F >> (i+1))) & 0x7F; } else { memcpy(p_line + (xpos + i * 5), &hollowBar, ARRAY_SIZE(hollowBar)); } } } #endif #ifdef ENABLE_AUDIO_BAR unsigned int sqrt16(unsigned int value) { // return square root of 'value' unsigned int shift = 16; // number of bits supplied in 'value' .. 2 ~ 32 unsigned int bit = 1u << --shift; unsigned int sqrti = 0; while (bit) { const unsigned int temp = ((sqrti << 1) | bit) << shift--; if (value >= temp) { value -= temp; sqrti |= bit; } bit >>= 1; } return sqrti; } void UI_DisplayAudioBar(void) { if (gSetting_mic_bar) { if(gLowBattery && !gLowBatteryConfirmed) return; const unsigned int line = 3; if (gCurrentFunction != FUNCTION_TRANSMIT || gScreenToDisplay != DISPLAY_MAIN #ifdef ENABLE_DTMF_CALLING || gDTMF_CallState != DTMF_CALL_STATE_NONE #endif ) { return; // screen is in use } #if defined(ENABLE_ALARM) || defined(ENABLE_TX1750) if (gAlarmState != ALARM_STATE_OFF) return; #endif const unsigned int voice_amp = BK4819_GetVoiceAmplitudeOut(); // 15:0 // make non-linear to make more sensitive at low values const unsigned int level = MIN(voice_amp * 8, 65535u); const unsigned int sqrt_level = MIN(sqrt16(level), 124u); uint8_t bars = 13 * sqrt_level / 124; uint8_t *p_line = gFrameBuffer[line]; memset(p_line, 0, LCD_WIDTH); DrawLevelBar(62, line, bars); if (gCurrentFunction == FUNCTION_TRANSMIT) ST7565_BlitFullScreen(); } } #endif void DisplayRSSIBar(const bool now) { #if defined(ENABLE_RSSI_BAR) const unsigned int txt_width = 7 * 8; // 8 text chars const unsigned int bar_x = 2 + txt_width + 4; // X coord of bar graph const unsigned int line = 3; uint8_t *p_line = gFrameBuffer[line]; char str[16]; const char plus[] = { 0b00011000, 0b00011000, 0b01111110, 0b01111110, 0b01111110, 0b00011000, 0b00011000, }; if (gEeprom.KEY_LOCK && gKeypadLocked > 0) return; // display is in use if (gCurrentFunction == FUNCTION_TRANSMIT || gScreenToDisplay != DISPLAY_MAIN #ifdef ENABLE_DTMF_CALLING || gDTMF_CallState != DTMF_CALL_STATE_NONE #endif ) return; // display is in use if (now) memset(p_line, 0, LCD_WIDTH); const int16_t s0_dBm = -gEeprom.S0_LEVEL; // S0 .. base level const int16_t rssi_dBm = BK4819_GetRSSI_dBm() #ifdef ENABLE_AM_FIX + ((gSetting_AM_fix && gRxVfo->Modulation == MODULATION_AM) ? AM_fix_get_gain_diff() : 0) #endif + dBmCorrTable[gRxVfo->Band]; int s0_9 = gEeprom.S0_LEVEL - gEeprom.S9_LEVEL; const uint8_t s_level = MIN(MAX((int32_t)(rssi_dBm - s0_dBm)*100 / (s0_9*100/9), 0), 9); // S0 - S9 uint8_t overS9dBm = MIN(MAX(rssi_dBm + gEeprom.S9_LEVEL, 0), 99); uint8_t overS9Bars = MIN(overS9dBm/10, 4); if(overS9Bars == 0) { sprintf(str, "% 4d S%d", rssi_dBm, s_level); } else { sprintf(str, "% 4d %2d", rssi_dBm, overS9dBm); memcpy(p_line + 2 + 7*5, &plus, ARRAY_SIZE(plus)); } UI_PrintStringSmall(str, 2, 0, line); DrawLevelBar(bar_x, line, s_level + overS9Bars); if (now) ST7565_BlitLine(line); #else int16_t rssi = BK4819_GetRSSI(); uint8_t Level; if (rssi >= gEEPROM_RSSI_CALIB[gRxVfo->Band][3]) { Level = 6; } else if (rssi >= gEEPROM_RSSI_CALIB[gRxVfo->Band][2]) { Level = 4; } else if (rssi >= gEEPROM_RSSI_CALIB[gRxVfo->Band][1]) { Level = 2; } else if (rssi >= gEEPROM_RSSI_CALIB[gRxVfo->Band][0]) { Level = 1; } else { Level = 0; } uint8_t *pLine = (gEeprom.RX_VFO == 0)? gFrameBuffer[2] : gFrameBuffer[6]; if (now) memset(pLine, 0, 23); DrawSmallAntennaAndBars(pLine, Level); if (now) ST7565_BlitFullScreen(); #endif } #ifdef ENABLE_AGC_SHOW_DATA static void PrintAGC(bool now) { char buf[20]; memset(gFrameBuffer[3], 0, 128); union { struct { uint16_t _ : 5; uint16_t agcSigStrength : 7; int16_t gainIdx : 3; uint16_t agcEnab : 1; }; uint16_t __raw; } reg7e; reg7e.__raw = BK4819_ReadRegister(0x7E); uint8_t gainAddr = reg7e.gainIdx < 0 ? 0x14 : 0x10 + reg7e.gainIdx; union { struct { uint16_t pga:3; uint16_t mixer:2; uint16_t lna:3; uint16_t lnaS:2; }; uint16_t __raw; } agcGainReg; agcGainReg.__raw = BK4819_ReadRegister(gainAddr); int8_t lnaShortTab[] = {-28, -24, -19, 0}; int8_t lnaTab[] = {-24, -19, -14, -9, -6, -4, -2, 0}; int8_t mixerTab[] = {-8, -6, -3, 0}; int8_t pgaTab[] = {-33, -27, -21, -15, -9, -6, -3, 0}; int16_t agcGain = lnaShortTab[agcGainReg.lnaS] + lnaTab[agcGainReg.lna] + mixerTab[agcGainReg.mixer] + pgaTab[agcGainReg.pga]; sprintf(buf, "%d%2d %2d %2d %3d", reg7e.agcEnab, reg7e.gainIdx, -agcGain, reg7e.agcSigStrength, BK4819_GetRSSI()); UI_PrintStringSmall(buf, 2, 0, 3); if(now) ST7565_BlitLine(3); } #endif void UI_MAIN_TimeSlice500ms(void) { if(gScreenToDisplay==DISPLAY_MAIN) { #ifdef ENABLE_AGC_SHOW_DATA PrintAGC(true); return; #endif const bool rx = (gCurrentFunction == FUNCTION_RECEIVE || gCurrentFunction == FUNCTION_MONITOR || gCurrentFunction == FUNCTION_INCOMING); if(rx) DisplayRSSIBar(true); } } // *************************************************************************** void UI_DisplayMain(void) { char String[22]; center_line = CENTER_LINE_NONE; // clear the screen memset(gFrameBuffer, 0, sizeof(gFrameBuffer)); if(gLowBattery && !gLowBatteryConfirmed) { UI_DisplayPopup("LOW BATTERY"); ST7565_BlitFullScreen(); return; } if (gEeprom.KEY_LOCK && gKeypadLocked > 0) { // tell user how to unlock the keyboard UI_PrintString("Long press #", 0, LCD_WIDTH, 1, 8); UI_PrintString("to unlock", 0, LCD_WIDTH, 3, 8); ST7565_BlitFullScreen(); return; } unsigned int activeTxVFO = gRxVfoIsActive ? gEeprom.RX_VFO : gEeprom.TX_VFO; for (unsigned int vfo_num = 0; vfo_num < 2; vfo_num++) { const unsigned int line0 = 0; // text screen line const unsigned int line1 = 4; const unsigned int line = (vfo_num == 0) ? line0 : line1; const bool isMainVFO = (vfo_num == gEeprom.TX_VFO); uint8_t *p_line0 = gFrameBuffer[line + 0]; uint8_t *p_line1 = gFrameBuffer[line + 1]; enum Vfo_txtr_mode mode = VFO_MODE_NONE; if (activeTxVFO != vfo_num) // this is not active TX VFO { #ifdef ENABLE_SCAN_RANGES if(gScanRangeStart) { UI_PrintString("ScnRng", 5, 0, line, 8); sprintf(String, "%3u.%05u", gScanRangeStart / 100000, gScanRangeStart % 100000); UI_PrintStringSmall(String, 56, 0, line); uint32_t frq = gEeprom.VfoInfo[vfo_num].pRX->Frequency; sprintf(String, "%3u.%05u", frq / 100000, frq % 100000); UI_PrintStringSmall(String, 56, 0, line + 1); continue; } #endif if ( #ifdef ENABLE_DTMF_CALLING gDTMF_CallState != DTMF_CALL_STATE_NONE || gDTMF_IsTx || #endif gDTMF_InputMode) { // show DTMF stuff #ifdef ENABLE_DTMF_CALLING char Contact[16]; if (!gDTMF_InputMode) { memset(Contact, 0, sizeof(Contact)); if (gDTMF_CallState == DTMF_CALL_STATE_CALL_OUT) strcpy(String, (gDTMF_State == DTMF_STATE_CALL_OUT_RSP) ? "CALL OUT(RSP)" : "CALL OUT"); else if (gDTMF_CallState == DTMF_CALL_STATE_RECEIVED || gDTMF_CallState == DTMF_CALL_STATE_RECEIVED_STAY) sprintf(String, "CALL FRM:%s", (DTMF_FindContact(gDTMF_Caller, Contact)) ? Contact : gDTMF_Caller); else if (gDTMF_IsTx) strcpy(String, (gDTMF_State == DTMF_STATE_TX_SUCC) ? "DTMF TX(SUCC)" : "DTMF TX"); } else #endif { sprintf(String, ">%s", gDTMF_InputBox); } UI_PrintString(String, 2, 0, 0 + (vfo_num * 3), 8); #ifdef ENABLE_DTMF_CALLING memset(String, 0, sizeof(String)); if (!gDTMF_InputMode) { memset(Contact, 0, sizeof(Contact)); if (gDTMF_CallState == DTMF_CALL_STATE_CALL_OUT) sprintf(String, ">%s", (DTMF_FindContact(gDTMF_String, Contact)) ? Contact : gDTMF_String); else if (gDTMF_CallState == DTMF_CALL_STATE_RECEIVED || gDTMF_CallState == DTMF_CALL_STATE_RECEIVED_STAY) sprintf(String, ">%s", (DTMF_FindContact(gDTMF_Callee, Contact)) ? Contact : gDTMF_Callee); else if (gDTMF_IsTx) sprintf(String, ">%s", gDTMF_String); } UI_PrintString(String, 2, 0, 2 + (vfo_num * 3), 8); #endif center_line = CENTER_LINE_IN_USE; continue; } // highlight the selected/used VFO with a marker if (isMainVFO) memcpy(p_line0 + 0, BITMAP_VFO_Default, sizeof(BITMAP_VFO_Default)); } else // active TX VFO { // highlight the selected/used VFO with a marker if (isMainVFO) memcpy(p_line0 + 0, BITMAP_VFO_Default, sizeof(BITMAP_VFO_Default)); else memcpy(p_line0 + 0, BITMAP_VFO_NotDefault, sizeof(BITMAP_VFO_NotDefault)); } if (gCurrentFunction == FUNCTION_TRANSMIT) { // transmitting #ifdef ENABLE_ALARM if (gAlarmState == ALARM_STATE_SITE_ALARM) mode = VFO_MODE_RX; else #endif { if (activeTxVFO == vfo_num) { // show the TX symbol mode = VFO_MODE_TX; #ifdef ENABLE_SMALL_BOLD UI_PrintStringSmallBold("TX", 14, 0, line); #else UI_PrintStringSmall("TX", 14, 0, line); #endif } } } else { // receiving .. show the RX symbol mode = VFO_MODE_RX; if (FUNCTION_IsRx() && gEeprom.RX_VFO == vfo_num) { #ifdef ENABLE_SMALL_BOLD UI_PrintStringSmallBold("RX", 14, 0, line); #else UI_PrintStringSmall("RX", 14, 0, line); #endif } } if (IS_MR_CHANNEL(gEeprom.ScreenChannel[vfo_num])) { // channel mode const unsigned int x = 2; const bool inputting = (gInputBoxIndex == 0 || gEeprom.TX_VFO != vfo_num) ? false : true; if (!inputting) sprintf(String, "M%u", gEeprom.ScreenChannel[vfo_num] + 1); else sprintf(String, "M%.3s", INPUTBOX_GetAscii()); // show the input text UI_PrintStringSmall(String, x, 0, line + 1); } else if (IS_FREQ_CHANNEL(gEeprom.ScreenChannel[vfo_num])) { // frequency mode // show the frequency band number const unsigned int x = 2; char * buf = gEeprom.VfoInfo[vfo_num].pRX->Frequency < _1GHz_in_KHz ? "" : "+"; sprintf(String, "F%u%s", 1 + gEeprom.ScreenChannel[vfo_num] - FREQ_CHANNEL_FIRST, buf); UI_PrintStringSmall(String, x, 0, line + 1); } #ifdef ENABLE_NOAA else { if (gInputBoxIndex == 0 || gEeprom.TX_VFO != vfo_num) { // channel number sprintf(String, "N%u", 1 + gEeprom.ScreenChannel[vfo_num] - NOAA_CHANNEL_FIRST); } else { // user entering channel number sprintf(String, "N%u%u", '0' + gInputBox[0], '0' + gInputBox[1]); } UI_PrintStringSmall(String, 7, 0, line + 1); } #endif // ************ enum VfoState_t state = VfoState[vfo_num]; #ifdef ENABLE_ALARM if (gCurrentFunction == FUNCTION_TRANSMIT && gAlarmState == ALARM_STATE_SITE_ALARM) { if (activeTxVFO == vfo_num) state = VFO_STATE_ALARM; } #endif uint32_t frequency = gEeprom.VfoInfo[vfo_num].pRX->Frequency; if (state != VFO_STATE_NORMAL) { if (state < ARRAY_SIZE(VfoStateStr)) UI_PrintString(VfoStateStr[state], 31, 0, line, 8); } else if (gInputBoxIndex > 0 && IS_FREQ_CHANNEL(gEeprom.ScreenChannel[vfo_num]) && gEeprom.TX_VFO == vfo_num) { // user entering a frequency const char * ascii = INPUTBOX_GetAscii(); bool isGigaF = frequency>=_1GHz_in_KHz; sprintf(String, "%.*s.%.3s", 3 + isGigaF, ascii, ascii + 3 + isGigaF); #ifdef ENABLE_BIG_FREQ if(!isGigaF) { // show the remaining 2 small frequency digits UI_PrintStringSmall(String + 7, 113, 0, line + 1); String[7] = 0; // show the main large frequency digits UI_DisplayFrequency(String, 32, line, false); } else #endif { // show the frequency in the main font UI_PrintString(String, 32, 0, line, 8); } continue; } else { if (gCurrentFunction == FUNCTION_TRANSMIT) { // transmitting if (activeTxVFO == vfo_num) frequency = gEeprom.VfoInfo[vfo_num].pTX->Frequency; } if (IS_MR_CHANNEL(gEeprom.ScreenChannel[vfo_num])) { // it's a channel // show the scan list assigment symbols const ChannelAttributes_t att = gMR_ChannelAttributes[gEeprom.ScreenChannel[vfo_num]]; if (att.scanlist1) memcpy(p_line0 + 113, BITMAP_ScanList1, sizeof(BITMAP_ScanList1)); if (att.scanlist2) memcpy(p_line0 + 120, BITMAP_ScanList2, sizeof(BITMAP_ScanList2)); // compander symbol #ifndef ENABLE_BIG_FREQ if (att.compander) memcpy(p_line0 + 120 + LCD_WIDTH, BITMAP_compand, sizeof(BITMAP_compand)); #else // TODO: // find somewhere else to put the symbol #endif switch (gEeprom.CHANNEL_DISPLAY_MODE) { case MDF_FREQUENCY: // show the channel frequency sprintf(String, "%3u.%05u", frequency / 100000, frequency % 100000); #ifdef ENABLE_BIG_FREQ if(frequency < _1GHz_in_KHz) { // show the remaining 2 small frequency digits UI_PrintStringSmall(String + 7, 113, 0, line + 1); String[7] = 0; // show the main large frequency digits UI_DisplayFrequency(String, 32, line, false); } else #endif { // show the frequency in the main font UI_PrintString(String, 32, 0, line, 8); } break; case MDF_CHANNEL: // show the channel number sprintf(String, "CH-%03u", gEeprom.ScreenChannel[vfo_num] + 1); UI_PrintString(String, 32, 0, line, 8); break; case MDF_NAME: // show the channel name case MDF_NAME_FREQ: // show the channel name and frequency SETTINGS_FetchChannelName(String, gEeprom.ScreenChannel[vfo_num]); if (String[0] == 0) { // no channel name, show the channel number instead sprintf(String, "CH-%03u", gEeprom.ScreenChannel[vfo_num] + 1); } if (gEeprom.CHANNEL_DISPLAY_MODE == MDF_NAME) { UI_PrintString(String, 32, 0, line, 8); } else { #ifdef ENABLE_SMALL_BOLD UI_PrintStringSmallBold(String, 32 + 4, 0, line); #else UI_PrintStringSmall(String, 32 + 4, 0, line); #endif // show the channel frequency below the channel number/name sprintf(String, "%03u.%05u", frequency / 100000, frequency % 100000); UI_PrintStringSmall(String, 32 + 4, 0, line + 1); } break; } } else { // frequency mode sprintf(String, "%3u.%05u", frequency / 100000, frequency % 100000); #ifdef ENABLE_BIG_FREQ if(frequency < _1GHz_in_KHz) { // show the remaining 2 small frequency digits UI_PrintStringSmall(String + 7, 113, 0, line + 1); String[7] = 0; // show the main large frequency digits UI_DisplayFrequency(String, 32, line, false); } else #endif { // show the frequency in the main font UI_PrintString(String, 32, 0, line, 8); } // show the channel symbols const ChannelAttributes_t att = gMR_ChannelAttributes[gEeprom.ScreenChannel[vfo_num]]; if (att.compander) #ifdef ENABLE_BIG_FREQ memcpy(p_line0 + 120, BITMAP_compand, sizeof(BITMAP_compand)); #else memcpy(p_line0 + 120 + LCD_WIDTH, BITMAP_compand, sizeof(BITMAP_compand)); #endif } } // ************ { // show the TX/RX level uint8_t Level = 0; if (mode == VFO_MODE_TX) { // TX power level switch (gRxVfo->OUTPUT_POWER) { case OUTPUT_POWER_LOW: Level = 2; break; case OUTPUT_POWER_MID: Level = 4; break; case OUTPUT_POWER_HIGH: Level = 6; break; } } else if (mode == VFO_MODE_RX) { // RX signal level #ifndef ENABLE_RSSI_BAR // bar graph if (gVFO_RSSI_bar_level[vfo_num] > 0) Level = gVFO_RSSI_bar_level[vfo_num]; #endif } if(Level) DrawSmallAntennaAndBars(p_line1 + LCD_WIDTH, Level); } // ************ String[0] = '\0'; // show the modulation symbol const char * s = ""; const ModulationMode_t mod = gEeprom.VfoInfo[vfo_num].Modulation; switch (mod){ case MODULATION_FM: { const FREQ_Config_t *pConfig = (mode == VFO_MODE_TX) ? gEeprom.VfoInfo[vfo_num].pTX : gEeprom.VfoInfo[vfo_num].pRX; const unsigned int code_type = pConfig->CodeType; const char *code_list[] = {"", "CT", "DCS", "DCR"}; if (code_type < ARRAY_SIZE(code_list)) s = code_list[code_type]; break; } default: s = gModulationStr[mod]; break; } UI_PrintStringSmall(s, LCD_WIDTH + 24, 0, line + 1); if (state == VFO_STATE_NORMAL || state == VFO_STATE_ALARM) { // show the TX power const char pwr_list[] = "LMH"; const unsigned int i = gEeprom.VfoInfo[vfo_num].OUTPUT_POWER; String[0] = (i < ARRAY_SIZE(pwr_list)) ? pwr_list[i] : '\0'; String[1] = '\0'; UI_PrintStringSmall(String, LCD_WIDTH + 46, 0, line + 1); } if (gEeprom.VfoInfo[vfo_num].freq_config_RX.Frequency != gEeprom.VfoInfo[vfo_num].freq_config_TX.Frequency) { // show the TX offset symbol const char dir_list[] = "\0+-"; const unsigned int i = gEeprom.VfoInfo[vfo_num].TX_OFFSET_FREQUENCY_DIRECTION; String[0] = (i < sizeof(dir_list)) ? dir_list[i] : '?'; String[1] = '\0'; UI_PrintStringSmall(String, LCD_WIDTH + 54, 0, line + 1); } // show the TX/RX reverse symbol if (gEeprom.VfoInfo[vfo_num].FrequencyReverse) UI_PrintStringSmall("R", LCD_WIDTH + 62, 0, line + 1); { // show the narrow band symbol String[0] = '\0'; if (gEeprom.VfoInfo[vfo_num].CHANNEL_BANDWIDTH == BANDWIDTH_NARROW) { String[0] = 'N'; String[1] = '\0'; } UI_PrintStringSmall(String, LCD_WIDTH + 70, 0, line + 1); } #ifdef ENABLE_DTMF_CALLING // show the DTMF decoding symbol if (gEeprom.VfoInfo[vfo_num].DTMF_DECODING_ENABLE || gSetting_KILLED) UI_PrintStringSmall("DTMF", LCD_WIDTH + 78, 0, line + 1); #endif // show the audio scramble symbol if (gEeprom.VfoInfo[vfo_num].SCRAMBLING_TYPE > 0 && gSetting_ScrambleEnable) UI_PrintStringSmall("SCR", LCD_WIDTH + 106, 0, line + 1); } #ifdef ENABLE_AGC_SHOW_DATA center_line = CENTER_LINE_IN_USE; PrintAGC(false); #endif if (center_line == CENTER_LINE_NONE) { // we're free to use the middle line const bool rx = FUNCTION_IsRx(); #ifdef ENABLE_AUDIO_BAR if (gSetting_mic_bar && gCurrentFunction == FUNCTION_TRANSMIT) { center_line = CENTER_LINE_AUDIO_BAR; UI_DisplayAudioBar(); } else #endif #if defined(ENABLE_AM_FIX) && defined(ENABLE_AM_FIX_SHOW_DATA) if (rx && gEeprom.VfoInfo[gEeprom.RX_VFO].Modulation == MODULATION_AM && gSetting_AM_fix) { if (gScreenToDisplay != DISPLAY_MAIN #ifdef ENABLE_DTMF_CALLING || gDTMF_CallState != DTMF_CALL_STATE_NONE #endif ) return; center_line = CENTER_LINE_AM_FIX_DATA; AM_fix_print_data(gEeprom.RX_VFO, String); UI_PrintStringSmall(String, 2, 0, 3); } else #endif #ifdef ENABLE_RSSI_BAR if (rx) { center_line = CENTER_LINE_RSSI; DisplayRSSIBar(false); } else #endif if (rx || gCurrentFunction == FUNCTION_FOREGROUND || gCurrentFunction == FUNCTION_POWER_SAVE) { #if 1 if (gSetting_live_DTMF_decoder && gDTMF_RX_live[0] != 0) { // show live DTMF decode const unsigned int len = strlen(gDTMF_RX_live); const unsigned int idx = (len > (17 - 5)) ? len - (17 - 5) : 0; // limit to last 'n' chars if (gScreenToDisplay != DISPLAY_MAIN #ifdef ENABLE_DTMF_CALLING || gDTMF_CallState != DTMF_CALL_STATE_NONE #endif ) return; center_line = CENTER_LINE_DTMF_DEC; strcpy(String, "DTMF "); strcat(String, gDTMF_RX_live + idx); UI_PrintStringSmall(String, 2, 0, 3); } #else if (gSetting_live_DTMF_decoder && gDTMF_RX_index > 0) { // show live DTMF decode const unsigned int len = gDTMF_RX_index; const unsigned int idx = (len > (17 - 5)) ? len - (17 - 5) : 0; // limit to last 'n' chars if (gScreenToDisplay != DISPLAY_MAIN || gDTMF_CallState != DTMF_CALL_STATE_NONE) return; center_line = CENTER_LINE_DTMF_DEC; strcpy(String, "DTMF "); strcat(String, gDTMF_RX + idx); UI_PrintStringSmall(String, 2, 0, 3); } #endif #ifdef ENABLE_SHOW_CHARGE_LEVEL else if (gChargingWithTypeC) { // charging .. show the battery state if (gScreenToDisplay != DISPLAY_MAIN #ifdef ENABLE_DTMF_CALLING || gDTMF_CallState != DTMF_CALL_STATE_NONE #endif ) return; center_line = CENTER_LINE_CHARGE_DATA; sprintf(String, "Charge %u.%02uV %u%%", gBatteryVoltageAverage / 100, gBatteryVoltageAverage % 100, BATTERY_VoltsToPercent(gBatteryVoltageAverage)); UI_PrintStringSmall(String, 2, 0, 3); } #endif } } ST7565_BlitFullScreen(); } // ***************************************************************************