mirror of
http://github.com/valkey-io/valkey
synced 2024-11-22 00:52:38 +00:00
Incrementally rehahsing hash table! Thanks to Derek Collison and Pieter Noordhuis for feedbacks/help
This commit is contained in:
parent
e6cca5dba6
commit
5413c40da7
2
Makefile
2
Makefile
@ -85,7 +85,7 @@ bench:
|
||||
./redis-benchmark
|
||||
|
||||
log:
|
||||
git log '--pretty=format:%ad %s' --date=short > Changelog
|
||||
git log '--pretty=format:%ad %s (%cn)' --date=short > Changelog
|
||||
|
||||
32bit:
|
||||
@echo ""
|
||||
|
345
dict.c
345
dict.c
@ -119,7 +119,7 @@ unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
|
||||
|
||||
/* Reset an hashtable already initialized with ht_init().
|
||||
* NOTE: This function should only called by ht_destroy(). */
|
||||
static void _dictReset(dict *ht)
|
||||
static void _dictReset(dictht *ht)
|
||||
{
|
||||
ht->table = NULL;
|
||||
ht->size = 0;
|
||||
@ -131,105 +131,148 @@ static void _dictReset(dict *ht)
|
||||
dict *dictCreate(dictType *type,
|
||||
void *privDataPtr)
|
||||
{
|
||||
dict *ht = _dictAlloc(sizeof(*ht));
|
||||
dict *d = _dictAlloc(sizeof(*d));
|
||||
|
||||
_dictInit(ht,type,privDataPtr);
|
||||
return ht;
|
||||
_dictInit(d,type,privDataPtr);
|
||||
return d;
|
||||
}
|
||||
|
||||
/* Initialize the hash table */
|
||||
int _dictInit(dict *ht, dictType *type,
|
||||
int _dictInit(dict *d, dictType *type,
|
||||
void *privDataPtr)
|
||||
{
|
||||
_dictReset(ht);
|
||||
ht->type = type;
|
||||
ht->privdata = privDataPtr;
|
||||
_dictReset(&d->ht[0]);
|
||||
_dictReset(&d->ht[1]);
|
||||
d->type = type;
|
||||
d->privdata = privDataPtr;
|
||||
d->rehashidx = -1;
|
||||
d->iterators = 0;
|
||||
return DICT_OK;
|
||||
}
|
||||
|
||||
/* Resize the table to the minimal size that contains all the elements,
|
||||
* but with the invariant of a USER/BUCKETS ration near to <= 1 */
|
||||
int dictResize(dict *ht)
|
||||
int dictResize(dict *d)
|
||||
{
|
||||
int minimal = ht->used;
|
||||
int minimal;
|
||||
|
||||
if (!dict_can_resize) return DICT_ERR;
|
||||
if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
|
||||
minimal = d->ht[0].used;
|
||||
if (minimal < DICT_HT_INITIAL_SIZE)
|
||||
minimal = DICT_HT_INITIAL_SIZE;
|
||||
return dictExpand(ht, minimal);
|
||||
return dictExpand(d, minimal);
|
||||
}
|
||||
|
||||
/* Expand or create the hashtable */
|
||||
int dictExpand(dict *ht, unsigned long size)
|
||||
int dictExpand(dict *d, unsigned long size)
|
||||
{
|
||||
dict n; /* the new hashtable */
|
||||
unsigned long realsize = _dictNextPower(size), i;
|
||||
dictht n; /* the new hashtable */
|
||||
unsigned long realsize = _dictNextPower(size);
|
||||
|
||||
/* the size is invalid if it is smaller than the number of
|
||||
* elements already inside the hashtable */
|
||||
if (ht->used > size)
|
||||
if (dictIsRehashing(d) || d->ht[0].used > size)
|
||||
return DICT_ERR;
|
||||
|
||||
_dictInit(&n, ht->type, ht->privdata);
|
||||
n.size = realsize;
|
||||
n.sizemask = realsize-1;
|
||||
n.table = _dictAlloc(realsize*sizeof(dictEntry*));
|
||||
n.used = 0;
|
||||
|
||||
/* Initialize all the pointers to NULL */
|
||||
memset(n.table, 0, realsize*sizeof(dictEntry*));
|
||||
|
||||
/* Copy all the elements from the old to the new table:
|
||||
* note that if the old hash table is empty ht->size is zero,
|
||||
* so dictExpand just creates an hash table. */
|
||||
n.used = ht->used;
|
||||
for (i = 0; i < ht->size && ht->used > 0; i++) {
|
||||
dictEntry *he, *nextHe;
|
||||
|
||||
if (ht->table[i] == NULL) continue;
|
||||
|
||||
/* For each hash entry on this slot... */
|
||||
he = ht->table[i];
|
||||
while(he) {
|
||||
unsigned int h;
|
||||
|
||||
nextHe = he->next;
|
||||
/* Get the new element index */
|
||||
h = dictHashKey(ht, he->key) & n.sizemask;
|
||||
he->next = n.table[h];
|
||||
n.table[h] = he;
|
||||
ht->used--;
|
||||
/* Pass to the next element */
|
||||
he = nextHe;
|
||||
}
|
||||
/* Is this the first initialization? If so it's not really a rehashing
|
||||
* we just set the first hash table so that it can accept keys. */
|
||||
if (d->ht[0].table == NULL) {
|
||||
d->ht[0] = n;
|
||||
return DICT_OK;
|
||||
}
|
||||
assert(ht->used == 0);
|
||||
_dictFree(ht->table);
|
||||
|
||||
/* Remap the new hashtable in the old */
|
||||
*ht = n;
|
||||
/* Prepare a second hash table for incremental rehashing */
|
||||
d->ht[1] = n;
|
||||
d->rehashidx = 0;
|
||||
return DICT_OK;
|
||||
}
|
||||
|
||||
/* Performs N steps of incremental rehashing. Returns 1 if there are still
|
||||
* keys to move from the old to the new hash table, otherwise 0 is returned.
|
||||
* Note that a rehashing step consists in moving a bucket (that may have more
|
||||
* thank one key as we use chaining) from the old to the new hash table. */
|
||||
int dictRehash(dict *d, int n) {
|
||||
if (!dictIsRehashing(d)) return 0;
|
||||
|
||||
while(n--) {
|
||||
dictEntry *de, *nextde;
|
||||
|
||||
/* Check if we already rehashed the whole table... */
|
||||
if (d->ht[0].used == 0) {
|
||||
_dictFree(d->ht[0].table);
|
||||
d->ht[0] = d->ht[1];
|
||||
_dictReset(&d->ht[1]);
|
||||
d->rehashidx = -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Note that rehashidx can't overflow as we are sure there are more
|
||||
* elements because ht[0].used != 0 */
|
||||
while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
|
||||
de = d->ht[0].table[d->rehashidx];
|
||||
/* Move all the keys in this bucket from the old to the new hash HT */
|
||||
while(de) {
|
||||
unsigned int h;
|
||||
|
||||
nextde = de->next;
|
||||
/* Get the index in the new hash table */
|
||||
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
|
||||
de->next = d->ht[1].table[h];
|
||||
d->ht[1].table[h] = de;
|
||||
d->ht[0].used--;
|
||||
d->ht[1].used++;
|
||||
de = nextde;
|
||||
}
|
||||
d->ht[0].table[d->rehashidx] = NULL;
|
||||
d->rehashidx++;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* This function performs just a step of rehashing, and only if there are
|
||||
* not iterators bound to our hash table. When we have iterators in the middle
|
||||
* of a rehashing we can't mess with the two hash tables otherwise some element
|
||||
* can be missed or duplicated.
|
||||
*
|
||||
* This function is called by common lookup or update operations in the
|
||||
* dictionary so that the hash table automatically migrates from H1 to H2
|
||||
* while it is actively used. */
|
||||
static void _dictRehashStep(dict *d) {
|
||||
if (d->iterators == 0) dictRehash(d,1);
|
||||
}
|
||||
|
||||
/* Add an element to the target hash table */
|
||||
int dictAdd(dict *ht, void *key, void *val)
|
||||
int dictAdd(dict *d, void *key, void *val)
|
||||
{
|
||||
int index;
|
||||
dictEntry *entry;
|
||||
dictht *ht;
|
||||
|
||||
if (dictIsRehashing(d)) _dictRehashStep(d);
|
||||
|
||||
/* Get the index of the new element, or -1 if
|
||||
* the element already exists. */
|
||||
if ((index = _dictKeyIndex(ht, key)) == -1)
|
||||
if ((index = _dictKeyIndex(d, key)) == -1)
|
||||
return DICT_ERR;
|
||||
|
||||
/* Allocates the memory and stores key */
|
||||
ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
|
||||
entry = _dictAlloc(sizeof(*entry));
|
||||
entry->next = ht->table[index];
|
||||
ht->table[index] = entry;
|
||||
ht->used++;
|
||||
|
||||
/* Set the hash entry fields. */
|
||||
dictSetHashKey(ht, entry, key);
|
||||
dictSetHashVal(ht, entry, val);
|
||||
ht->used++;
|
||||
dictSetHashKey(d, entry, key);
|
||||
dictSetHashVal(d, entry, val);
|
||||
return DICT_OK;
|
||||
}
|
||||
|
||||
@ -237,16 +280,16 @@ int dictAdd(dict *ht, void *key, void *val)
|
||||
* Return 1 if the key was added from scratch, 0 if there was already an
|
||||
* element with such key and dictReplace() just performed a value update
|
||||
* operation. */
|
||||
int dictReplace(dict *ht, void *key, void *val)
|
||||
int dictReplace(dict *d, void *key, void *val)
|
||||
{
|
||||
dictEntry *entry, auxentry;
|
||||
|
||||
/* Try to add the element. If the key
|
||||
* does not exists dictAdd will suceed. */
|
||||
if (dictAdd(ht, key, val) == DICT_OK)
|
||||
if (dictAdd(d, key, val) == DICT_OK)
|
||||
return 1;
|
||||
/* It already exists, get the entry */
|
||||
entry = dictFind(ht, key);
|
||||
entry = dictFind(d, key);
|
||||
/* Free the old value and set the new one */
|
||||
/* Set the new value and free the old one. Note that it is important
|
||||
* to do that in this order, as the value may just be exactly the same
|
||||
@ -254,40 +297,45 @@ int dictReplace(dict *ht, void *key, void *val)
|
||||
* you want to increment (set), and then decrement (free), and not the
|
||||
* reverse. */
|
||||
auxentry = *entry;
|
||||
dictSetHashVal(ht, entry, val);
|
||||
dictFreeEntryVal(ht, &auxentry);
|
||||
dictSetHashVal(d, entry, val);
|
||||
dictFreeEntryVal(d, &auxentry);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Search and remove an element */
|
||||
static int dictGenericDelete(dict *ht, const void *key, int nofree)
|
||||
static int dictGenericDelete(dict *d, const void *key, int nofree)
|
||||
{
|
||||
unsigned int h;
|
||||
unsigned int h, idx;
|
||||
dictEntry *he, *prevHe;
|
||||
int table;
|
||||
|
||||
if (ht->size == 0)
|
||||
return DICT_ERR;
|
||||
h = dictHashKey(ht, key) & ht->sizemask;
|
||||
he = ht->table[h];
|
||||
if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
|
||||
if (dictIsRehashing(d)) _dictRehashStep(d);
|
||||
h = dictHashKey(d, key);
|
||||
|
||||
prevHe = NULL;
|
||||
while(he) {
|
||||
if (dictCompareHashKeys(ht, key, he->key)) {
|
||||
/* Unlink the element from the list */
|
||||
if (prevHe)
|
||||
prevHe->next = he->next;
|
||||
else
|
||||
ht->table[h] = he->next;
|
||||
if (!nofree) {
|
||||
dictFreeEntryKey(ht, he);
|
||||
dictFreeEntryVal(ht, he);
|
||||
for (table = 0; table <= 1; table++) {
|
||||
idx = h & d->ht[table].sizemask;
|
||||
he = d->ht[table].table[idx];
|
||||
prevHe = NULL;
|
||||
while(he) {
|
||||
if (dictCompareHashKeys(d, key, he->key)) {
|
||||
/* Unlink the element from the list */
|
||||
if (prevHe)
|
||||
prevHe->next = he->next;
|
||||
else
|
||||
d->ht[table].table[idx] = he->next;
|
||||
if (!nofree) {
|
||||
dictFreeEntryKey(d, he);
|
||||
dictFreeEntryVal(d, he);
|
||||
}
|
||||
_dictFree(he);
|
||||
d->ht[table].used--;
|
||||
return DICT_OK;
|
||||
}
|
||||
_dictFree(he);
|
||||
ht->used--;
|
||||
return DICT_OK;
|
||||
prevHe = he;
|
||||
he = he->next;
|
||||
}
|
||||
prevHe = he;
|
||||
he = he->next;
|
||||
if (!dictIsRehashing(d)) break;
|
||||
}
|
||||
return DICT_ERR; /* not found */
|
||||
}
|
||||
@ -300,8 +348,8 @@ int dictDeleteNoFree(dict *ht, const void *key) {
|
||||
return dictGenericDelete(ht,key,1);
|
||||
}
|
||||
|
||||
/* Destroy an entire hash table */
|
||||
int _dictClear(dict *ht)
|
||||
/* Destroy an entire dictionary */
|
||||
int _dictClear(dict *d, dictht *ht)
|
||||
{
|
||||
unsigned long i;
|
||||
|
||||
@ -312,8 +360,8 @@ int _dictClear(dict *ht)
|
||||
if ((he = ht->table[i]) == NULL) continue;
|
||||
while(he) {
|
||||
nextHe = he->next;
|
||||
dictFreeEntryKey(ht, he);
|
||||
dictFreeEntryVal(ht, he);
|
||||
dictFreeEntryKey(d, he);
|
||||
dictFreeEntryVal(d, he);
|
||||
_dictFree(he);
|
||||
ht->used--;
|
||||
he = nextHe;
|
||||
@ -327,33 +375,40 @@ int _dictClear(dict *ht)
|
||||
}
|
||||
|
||||
/* Clear & Release the hash table */
|
||||
void dictRelease(dict *ht)
|
||||
void dictRelease(dict *d)
|
||||
{
|
||||
_dictClear(ht);
|
||||
_dictFree(ht);
|
||||
_dictClear(d,&d->ht[0]);
|
||||
_dictClear(d,&d->ht[1]);
|
||||
_dictFree(d);
|
||||
}
|
||||
|
||||
dictEntry *dictFind(dict *ht, const void *key)
|
||||
dictEntry *dictFind(dict *d, const void *key)
|
||||
{
|
||||
dictEntry *he;
|
||||
unsigned int h;
|
||||
unsigned int h, idx, table;
|
||||
|
||||
if (ht->size == 0) return NULL;
|
||||
h = dictHashKey(ht, key) & ht->sizemask;
|
||||
he = ht->table[h];
|
||||
while(he) {
|
||||
if (dictCompareHashKeys(ht, key, he->key))
|
||||
return he;
|
||||
he = he->next;
|
||||
if (d->ht[0].size == 0) return NULL; /* We don't have a table at all */
|
||||
if (dictIsRehashing(d)) _dictRehashStep(d);
|
||||
h = dictHashKey(d, key);
|
||||
for (table = 0; table <= 1; table++) {
|
||||
idx = h & d->ht[table].sizemask;
|
||||
he = d->ht[table].table[idx];
|
||||
while(he) {
|
||||
if (dictCompareHashKeys(d, key, he->key))
|
||||
return he;
|
||||
he = he->next;
|
||||
}
|
||||
if (!dictIsRehashing(d)) return NULL;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
dictIterator *dictGetIterator(dict *ht)
|
||||
dictIterator *dictGetIterator(dict *d)
|
||||
{
|
||||
dictIterator *iter = _dictAlloc(sizeof(*iter));
|
||||
|
||||
iter->ht = ht;
|
||||
iter->d = d;
|
||||
iter->table = 0;
|
||||
iter->index = -1;
|
||||
iter->entry = NULL;
|
||||
iter->nextEntry = NULL;
|
||||
@ -364,10 +419,19 @@ dictEntry *dictNext(dictIterator *iter)
|
||||
{
|
||||
while (1) {
|
||||
if (iter->entry == NULL) {
|
||||
dictht *ht = &iter->d->ht[iter->table];
|
||||
if (iter->index == -1 && iter->table == 0) iter->d->iterators++;
|
||||
iter->index++;
|
||||
if (iter->index >=
|
||||
(signed)iter->ht->size) break;
|
||||
iter->entry = iter->ht->table[iter->index];
|
||||
if (iter->index >= (signed) ht->size) {
|
||||
if (dictIsRehashing(iter->d) && iter->table == 0) {
|
||||
iter->table++;
|
||||
iter->index = 0;
|
||||
ht = &iter->d->ht[1];
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
iter->entry = ht->table[iter->index];
|
||||
} else {
|
||||
iter->entry = iter->nextEntry;
|
||||
}
|
||||
@ -383,34 +447,45 @@ dictEntry *dictNext(dictIterator *iter)
|
||||
|
||||
void dictReleaseIterator(dictIterator *iter)
|
||||
{
|
||||
if (!(iter->index == -1 && iter->table == 0)) iter->d->iterators--;
|
||||
_dictFree(iter);
|
||||
}
|
||||
|
||||
/* Return a random entry from the hash table. Useful to
|
||||
* implement randomized algorithms */
|
||||
dictEntry *dictGetRandomKey(dict *ht)
|
||||
dictEntry *dictGetRandomKey(dict *d)
|
||||
{
|
||||
dictEntry *he;
|
||||
dictEntry *he, *orighe;
|
||||
unsigned int h;
|
||||
int listlen, listele;
|
||||
|
||||
if (ht->used == 0) return NULL;
|
||||
do {
|
||||
h = random() & ht->sizemask;
|
||||
he = ht->table[h];
|
||||
} while(he == NULL);
|
||||
if (dictSize(d) == 0) return NULL;
|
||||
if (dictIsRehashing(d)) _dictRehashStep(d);
|
||||
if (dictIsRehashing(d)) {
|
||||
do {
|
||||
h = random() % (d->ht[0].size+d->ht[1].size);
|
||||
he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
|
||||
d->ht[0].table[h];
|
||||
} while(he == NULL);
|
||||
} else {
|
||||
do {
|
||||
h = random() & d->ht[0].sizemask;
|
||||
he = d->ht[0].table[h];
|
||||
} while(he == NULL);
|
||||
}
|
||||
|
||||
/* Now we found a non empty bucket, but it is a linked
|
||||
* list and we need to get a random element from the list.
|
||||
* The only sane way to do so is to count the element and
|
||||
* The only sane way to do so is counting the elements and
|
||||
* select a random index. */
|
||||
listlen = 0;
|
||||
orighe = he;
|
||||
while(he) {
|
||||
he = he->next;
|
||||
listlen++;
|
||||
}
|
||||
listele = random() % listlen;
|
||||
he = ht->table[h];
|
||||
he = orighe;
|
||||
while(listele--) he = he->next;
|
||||
return he;
|
||||
}
|
||||
@ -418,14 +493,16 @@ dictEntry *dictGetRandomKey(dict *ht)
|
||||
/* ------------------------- private functions ------------------------------ */
|
||||
|
||||
/* Expand the hash table if needed */
|
||||
static int _dictExpandIfNeeded(dict *ht)
|
||||
static int _dictExpandIfNeeded(dict *d)
|
||||
{
|
||||
/* If the hash table is empty expand it to the intial size,
|
||||
* if the table is "full" dobule its size. */
|
||||
if (ht->size == 0)
|
||||
return dictExpand(ht, DICT_HT_INITIAL_SIZE);
|
||||
if (ht->used >= ht->size && dict_can_resize)
|
||||
return dictExpand(ht, ((ht->size > ht->used) ? ht->size : ht->used)*2);
|
||||
if (dictIsRehashing(d)) return DICT_OK;
|
||||
if (d->ht[0].size == 0)
|
||||
return dictExpand(d, DICT_HT_INITIAL_SIZE);
|
||||
if (d->ht[0].used >= d->ht[0].size && dict_can_resize)
|
||||
return dictExpand(d, ((d->ht[0].size > d->ht[0].used) ?
|
||||
d->ht[0].size : d->ht[0].used)*2);
|
||||
return DICT_OK;
|
||||
}
|
||||
|
||||
@ -444,33 +521,49 @@ static unsigned long _dictNextPower(unsigned long size)
|
||||
|
||||
/* Returns the index of a free slot that can be populated with
|
||||
* an hash entry for the given 'key'.
|
||||
* If the key already exists, -1 is returned. */
|
||||
static int _dictKeyIndex(dict *ht, const void *key)
|
||||
* If the key already exists, -1 is returned.
|
||||
*
|
||||
* Note that if we are in the process of rehashing the hash table, the
|
||||
* index is always returned in the context of the second (new) hash table. */
|
||||
static int _dictKeyIndex(dict *d, const void *key)
|
||||
{
|
||||
unsigned int h;
|
||||
unsigned int h, h1, h2;
|
||||
dictEntry *he;
|
||||
|
||||
/* Expand the hashtable if needed */
|
||||
if (_dictExpandIfNeeded(ht) == DICT_ERR)
|
||||
if (_dictExpandIfNeeded(d) == DICT_ERR)
|
||||
return -1;
|
||||
/* Compute the key hash value */
|
||||
h = dictHashKey(ht, key) & ht->sizemask;
|
||||
h = dictHashKey(d, key);
|
||||
h1 = h & d->ht[0].sizemask;
|
||||
h2 = h & d->ht[1].sizemask;
|
||||
/* Search if this slot does not already contain the given key */
|
||||
he = ht->table[h];
|
||||
he = d->ht[0].table[h1];
|
||||
while(he) {
|
||||
if (dictCompareHashKeys(ht, key, he->key))
|
||||
if (dictCompareHashKeys(d, key, he->key))
|
||||
return -1;
|
||||
he = he->next;
|
||||
}
|
||||
return h;
|
||||
if (!dictIsRehashing(d)) return h1;
|
||||
/* Check the second hash table */
|
||||
he = d->ht[1].table[h2];
|
||||
while(he) {
|
||||
if (dictCompareHashKeys(d, key, he->key))
|
||||
return -1;
|
||||
he = he->next;
|
||||
}
|
||||
return h2;
|
||||
}
|
||||
|
||||
void dictEmpty(dict *ht) {
|
||||
_dictClear(ht);
|
||||
void dictEmpty(dict *d) {
|
||||
_dictClear(d,&d->ht[0]);
|
||||
_dictClear(d,&d->ht[1]);
|
||||
d->rehashidx = -1;
|
||||
d->iterators = 0;
|
||||
}
|
||||
|
||||
#define DICT_STATS_VECTLEN 50
|
||||
void dictPrintStats(dict *ht) {
|
||||
static void _dictPrintStatsHt(dictht *ht) {
|
||||
unsigned long i, slots = 0, chainlen, maxchainlen = 0;
|
||||
unsigned long totchainlen = 0;
|
||||
unsigned long clvector[DICT_STATS_VECTLEN];
|
||||
@ -514,6 +607,14 @@ void dictPrintStats(dict *ht) {
|
||||
}
|
||||
}
|
||||
|
||||
void dictPrintStats(dict *d) {
|
||||
_dictPrintStatsHt(&d->ht[0]);
|
||||
if (dictIsRehashing(d)) {
|
||||
printf("-- Rehashing into ht[1]:\n");
|
||||
_dictPrintStatsHt(&d->ht[1]);
|
||||
}
|
||||
}
|
||||
|
||||
void dictEnableResize(void) {
|
||||
dict_can_resize = 1;
|
||||
}
|
||||
|
53
dict.h
53
dict.h
@ -57,17 +57,26 @@ typedef struct dictType {
|
||||
void (*valDestructor)(void *privdata, void *obj);
|
||||
} dictType;
|
||||
|
||||
typedef struct dict {
|
||||
/* This is our hash table structure. Every dictionary has two of this as we
|
||||
* implement incremental rehashing, for the old to the new table. */
|
||||
typedef struct dictht {
|
||||
dictEntry **table;
|
||||
dictType *type;
|
||||
unsigned long size;
|
||||
unsigned long sizemask;
|
||||
unsigned long used;
|
||||
} dictht;
|
||||
|
||||
typedef struct dict {
|
||||
dictType *type;
|
||||
void *privdata;
|
||||
dictht ht[2];
|
||||
int rehashidx; /* rehashing not in progress if rehashidx == -1 */
|
||||
int iterators; /* number of iterators currently running */
|
||||
} dict;
|
||||
|
||||
typedef struct dictIterator {
|
||||
dict *ht;
|
||||
dict *d;
|
||||
int table;
|
||||
int index;
|
||||
dictEntry *entry, *nextEntry;
|
||||
} dictIterator;
|
||||
@ -76,39 +85,40 @@ typedef struct dictIterator {
|
||||
#define DICT_HT_INITIAL_SIZE 4
|
||||
|
||||
/* ------------------------------- Macros ------------------------------------*/
|
||||
#define dictFreeEntryVal(ht, entry) \
|
||||
if ((ht)->type->valDestructor) \
|
||||
(ht)->type->valDestructor((ht)->privdata, (entry)->val)
|
||||
#define dictFreeEntryVal(d, entry) \
|
||||
if ((d)->type->valDestructor) \
|
||||
(d)->type->valDestructor((d)->privdata, (entry)->val)
|
||||
|
||||
#define dictSetHashVal(ht, entry, _val_) do { \
|
||||
if ((ht)->type->valDup) \
|
||||
entry->val = (ht)->type->valDup((ht)->privdata, _val_); \
|
||||
#define dictSetHashVal(d, entry, _val_) do { \
|
||||
if ((d)->type->valDup) \
|
||||
entry->val = (d)->type->valDup((d)->privdata, _val_); \
|
||||
else \
|
||||
entry->val = (_val_); \
|
||||
} while(0)
|
||||
|
||||
#define dictFreeEntryKey(ht, entry) \
|
||||
if ((ht)->type->keyDestructor) \
|
||||
(ht)->type->keyDestructor((ht)->privdata, (entry)->key)
|
||||
#define dictFreeEntryKey(d, entry) \
|
||||
if ((d)->type->keyDestructor) \
|
||||
(d)->type->keyDestructor((d)->privdata, (entry)->key)
|
||||
|
||||
#define dictSetHashKey(ht, entry, _key_) do { \
|
||||
if ((ht)->type->keyDup) \
|
||||
entry->key = (ht)->type->keyDup((ht)->privdata, _key_); \
|
||||
#define dictSetHashKey(d, entry, _key_) do { \
|
||||
if ((d)->type->keyDup) \
|
||||
entry->key = (d)->type->keyDup((d)->privdata, _key_); \
|
||||
else \
|
||||
entry->key = (_key_); \
|
||||
} while(0)
|
||||
|
||||
#define dictCompareHashKeys(ht, key1, key2) \
|
||||
(((ht)->type->keyCompare) ? \
|
||||
(ht)->type->keyCompare((ht)->privdata, key1, key2) : \
|
||||
#define dictCompareHashKeys(d, key1, key2) \
|
||||
(((d)->type->keyCompare) ? \
|
||||
(d)->type->keyCompare((d)->privdata, key1, key2) : \
|
||||
(key1) == (key2))
|
||||
|
||||
#define dictHashKey(ht, key) (ht)->type->hashFunction(key)
|
||||
#define dictHashKey(d, key) (d)->type->hashFunction(key)
|
||||
|
||||
#define dictGetEntryKey(he) ((he)->key)
|
||||
#define dictGetEntryVal(he) ((he)->val)
|
||||
#define dictSlots(ht) ((ht)->size)
|
||||
#define dictSize(ht) ((ht)->used)
|
||||
#define dictSlots(d) ((d)->ht[0].size+(d)->ht[1].size)
|
||||
#define dictSize(d) ((d)->ht[0].used+(d)->ht[1].used)
|
||||
#define dictIsRehashing(ht) ((ht)->rehashidx != -1)
|
||||
|
||||
/* API */
|
||||
dict *dictCreate(dictType *type, void *privDataPtr);
|
||||
@ -129,6 +139,7 @@ unsigned int dictGenHashFunction(const unsigned char *buf, int len);
|
||||
void dictEmpty(dict *ht);
|
||||
void dictEnableResize(void);
|
||||
void dictDisableResize(void);
|
||||
int dictRehash(dict *d, int n);
|
||||
|
||||
/* Hash table types */
|
||||
extern dictType dictTypeHeapStringCopyKey;
|
||||
|
5
redis.c
5
redis.c
@ -1201,11 +1201,8 @@ static void tryResizeHashTables(void) {
|
||||
int j;
|
||||
|
||||
for (j = 0; j < server.dbnum; j++) {
|
||||
if (htNeedsResize(server.db[j].dict)) {
|
||||
redisLog(REDIS_VERBOSE,"The hash table %d is too sparse, resize it...",j);
|
||||
if (htNeedsResize(server.db[j].dict))
|
||||
dictResize(server.db[j].dict);
|
||||
redisLog(REDIS_VERBOSE,"Hash table %d resized.",j);
|
||||
}
|
||||
if (htNeedsResize(server.db[j].expires))
|
||||
dictResize(server.db[j].expires);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user