start_server {tags {"hll"}} { test {HyperLogLog self test passes} { catch {r pfselftest} e set e } {OK} test {PFADD without arguments creates an HLL value} { r pfadd hll r exists hll } {1} test {Approximated cardinality after creation is zero} { r pfcount hll } {0} test {PFADD returns 1 when at least 1 reg was modified} { r pfadd hll a b c } {1} test {PFADD returns 0 when no reg was modified} { r pfadd hll a b c } {0} test {PFADD works with empty string (regression)} { r pfadd hll "" } # Note that the self test stresses much better the # cardinality estimation error. We are testing just the # command implementation itself here. test {PFCOUNT returns approximated cardinality of set} { r del hll set res {} r pfadd hll 1 2 3 4 5 lappend res [r pfcount hll] # Call it again to test cached value invalidation. r pfadd hll 6 7 8 8 9 10 lappend res [r pfcount hll] set res } {5 10} test {HyperLogLogs are promote from sparse to dense} { r del hll r config set hll-sparse-max-bytes 3000 set n 0 while {$n < 100000} { set elements {} for {set j 0} {$j < 100} {incr j} {lappend elements [expr rand()]} incr n 100 r pfadd hll {*}$elements set card [r pfcount hll] set err [expr {abs($card-$n)}] assert {$err < (double($card)/100)*5} if {$n < 1000} { assert {[r pfdebug encoding hll] eq {sparse}} } elseif {$n > 10000} { assert {[r pfdebug encoding hll] eq {dense}} } } } test {HyperLogLog sparse encoding stress test} { for {set x 0} {$x < 1000} {incr x} { r del hll1 hll2 set numele [randomInt 100] set elements {} for {set j 0} {$j < $numele} {incr j} { lappend elements [expr rand()] } # Force dense representation of hll2 r pfadd hll2 r pfdebug todense hll2 r pfadd hll1 {*}$elements r pfadd hll2 {*}$elements assert {[r pfdebug encoding hll1] eq {sparse}} assert {[r pfdebug encoding hll2] eq {dense}} # Cardinality estimated should match exactly. assert {[r pfcount hll1] eq [r pfcount hll2]} } } test {Corrupted sparse HyperLogLogs are detected: Additionl at tail} { r del hll r pfadd hll a b c r append hll "hello" set e {} catch {r pfcount hll} e set e } {*INVALIDOBJ*} test {Corrupted sparse HyperLogLogs are detected: Broken magic} { r del hll r pfadd hll a b c r setrange hll 0 "0123" set e {} catch {r pfcount hll} e set e } {*WRONGTYPE*} test {Corrupted sparse HyperLogLogs are detected: Invalid encoding} { r del hll r pfadd hll a b c r setrange hll 4 "x" set e {} catch {r pfcount hll} e set e } {*WRONGTYPE*} test {Corrupted dense HyperLogLogs are detected: Wrong length} { r del hll r pfadd hll a b c r setrange hll 4 "\x00" set e {} catch {r pfcount hll} e set e } {*WRONGTYPE*} test {PFADD, PFCOUNT, PFMERGE type checking works} { r set foo bar catch {r pfadd foo 1} e assert_match {*WRONGTYPE*} $e catch {r pfcount foo} e assert_match {*WRONGTYPE*} $e catch {r pfmerge bar foo} e assert_match {*WRONGTYPE*} $e catch {r pfmerge foo bar} e assert_match {*WRONGTYPE*} $e } test {PFMERGE results on the cardinality of union of sets} { r del hll hll1 hll2 hll3 r pfadd hll1 a b c r pfadd hll2 b c d r pfadd hll3 c d e r pfmerge hll hll1 hll2 hll3 r pfcount hll } {5} test {PFCOUNT multiple-keys merge returns cardinality of union #1} { r del hll1 hll2 hll3 for {set x 1} {$x < 10000} {incr x} { r pfadd hll1 "foo-$x" r pfadd hll2 "bar-$x" r pfadd hll3 "zap-$x" set card [r pfcount hll1 hll2 hll3] set realcard [expr {$x*3}] set err [expr {abs($card-$realcard)}] assert {$err < (double($card)/100)*5} } } test {PFCOUNT multiple-keys merge returns cardinality of union #2} { r del hll1 hll2 hll3 set elements {} for {set x 1} {$x < 10000} {incr x} { for {set j 1} {$j <= 3} {incr j} { set rint [randomInt 20000] r pfadd hll$j $rint lappend elements $rint } } set realcard [llength [lsort -unique $elements]] set card [r pfcount hll1 hll2 hll3] set err [expr {abs($card-$realcard)}] assert {$err < (double($card)/100)*5} } test {PFDEBUG GETREG returns the HyperLogLog raw registers} { r del hll r pfadd hll 1 2 3 llength [r pfdebug getreg hll] } {16384} test {PFADD / PFCOUNT cache invalidation works} { r del hll r pfadd hll a b c r pfcount hll assert {[r getrange hll 15 15] eq "\x00"} r pfadd hll a b c assert {[r getrange hll 15 15] eq "\x00"} r pfadd hll 1 2 3 assert {[r getrange hll 15 15] eq "\x80"} } }