mirror of
http://github.com/valkey-io/valkey
synced 2024-11-23 11:51:01 +00:00
130 lines
4.8 KiB
HTML
130 lines
4.8 KiB
HTML
|
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
|
|
<html>
|
|
<head>
|
|
<link type="text/css" rel="stylesheet" href="style.css" />
|
|
</head>
|
|
<body>
|
|
<div id="page">
|
|
|
|
<div id='header'>
|
|
<a href="index.html">
|
|
<img style="border:none" alt="Redis Documentation" src="redis.png">
|
|
</a>
|
|
</div>
|
|
|
|
<div id="pagecontent">
|
|
<div class="index">
|
|
<!-- This is a (PRE) block. Make sure it's left aligned or your toc title will be off. -->
|
|
<b>Benchmarks: Contents</b><br> <a href="#How Fast is Redis?">How Fast is Redis?</a><br> <a href="#Latency percentiles">Latency percentiles</a>
|
|
</div>
|
|
|
|
<h1 class="wikiname">Benchmarks</h1>
|
|
|
|
<div class="summary">
|
|
|
|
</div>
|
|
|
|
<div class="narrow">
|
|
<h1><a name="How Fast is Redis?">How Fast is Redis?</a></h1>Redis includes the <code name="code" class="python">redis-benchmark</code> utility that simulates <a href="SETs.html">SETs</a>/GETs done by N clients at the same time sending M total queries (it is similar to the Apache's <code name="code" class="python">ab</code> utility). Below you'll find the full output of the benchmark executed against a Linux box.<br/><br/><ul><li> The test was done with 50 simultaneous clients performing 100000 requests.</li><li> The value SET and GET is a 256 bytes string.</li><li> The Linux box is running <b>Linux 2.6</b>, it's <b>Xeon X3320 2.5Ghz</b>.</li><li> Text executed using the loopback interface (127.0.0.1).</li></ul>
|
|
Results: <b>about 110000 <a href="SETs.html">SETs</a> per second, about 81000 GETs per second.</b><h1><a name="Latency percentiles">Latency percentiles</a></h1><pre class="codeblock python" name="code">
|
|
./redis-benchmark -n 100000
|
|
|
|
====== SET ======
|
|
100007 requests completed in 0.88 seconds
|
|
50 parallel clients
|
|
3 bytes payload
|
|
keep alive: 1
|
|
|
|
58.50% <= 0 milliseconds
|
|
99.17% <= 1 milliseconds
|
|
99.58% <= 2 milliseconds
|
|
99.85% <= 3 milliseconds
|
|
99.90% <= 6 milliseconds
|
|
100.00% <= 9 milliseconds
|
|
114293.71 requests per second
|
|
|
|
====== GET ======
|
|
100000 requests completed in 1.23 seconds
|
|
50 parallel clients
|
|
3 bytes payload
|
|
keep alive: 1
|
|
|
|
43.12% <= 0 milliseconds
|
|
96.82% <= 1 milliseconds
|
|
98.62% <= 2 milliseconds
|
|
100.00% <= 3 milliseconds
|
|
81234.77 requests per second
|
|
|
|
====== INCR ======
|
|
100018 requests completed in 1.46 seconds
|
|
50 parallel clients
|
|
3 bytes payload
|
|
keep alive: 1
|
|
|
|
32.32% <= 0 milliseconds
|
|
96.67% <= 1 milliseconds
|
|
99.14% <= 2 milliseconds
|
|
99.83% <= 3 milliseconds
|
|
99.88% <= 4 milliseconds
|
|
99.89% <= 5 milliseconds
|
|
99.96% <= 9 milliseconds
|
|
100.00% <= 18 milliseconds
|
|
68458.59 requests per second
|
|
|
|
====== LPUSH ======
|
|
100004 requests completed in 1.14 seconds
|
|
50 parallel clients
|
|
3 bytes payload
|
|
keep alive: 1
|
|
|
|
62.27% <= 0 milliseconds
|
|
99.74% <= 1 milliseconds
|
|
99.85% <= 2 milliseconds
|
|
99.86% <= 3 milliseconds
|
|
99.89% <= 5 milliseconds
|
|
99.93% <= 7 milliseconds
|
|
99.96% <= 9 milliseconds
|
|
100.00% <= 22 milliseconds
|
|
100.00% <= 208 milliseconds
|
|
88109.25 requests per second
|
|
|
|
====== LPOP ======
|
|
100001 requests completed in 1.39 seconds
|
|
50 parallel clients
|
|
3 bytes payload
|
|
keep alive: 1
|
|
|
|
54.83% <= 0 milliseconds
|
|
97.34% <= 1 milliseconds
|
|
99.95% <= 2 milliseconds
|
|
99.96% <= 3 milliseconds
|
|
99.96% <= 4 milliseconds
|
|
100.00% <= 9 milliseconds
|
|
100.00% <= 208 milliseconds
|
|
71994.96 requests per second
|
|
</pre>Notes: changing the payload from 256 to 1024 or 4096 bytes does not change the numbers significantly (but reply packets are glued together up to 1024 bytes so GETs may be slower with big payloads). The same for the number of clients, from 50 to 256 clients I got the same numbers. With only 10 clients it starts to get a bit slower.<br/><br/>You can expect different results from different boxes. For example a low profile box like <b>Intel core duo T5500 clocked at 1.66Ghz running Linux 2.6</b> will output the following:
|
|
<pre class="codeblock python python" name="code">
|
|
./redis-benchmark -q -n 100000
|
|
SET: 53684.38 requests per second
|
|
GET: 45497.73 requests per second
|
|
INCR: 39370.47 requests per second
|
|
LPUSH: 34803.41 requests per second
|
|
LPOP: 37367.20 requests per second
|
|
</pre>Another one using a 64 bit box, a Xeon L5420 clocked at 2.5 Ghz:<br/><br/><pre class="codeblock python python python" name="code">
|
|
./redis-benchmark -q -n 100000
|
|
PING: 111731.84 requests per second
|
|
SET: 108114.59 requests per second
|
|
GET: 98717.67 requests per second
|
|
INCR: 95241.91 requests per second
|
|
LPUSH: 104712.05 requests per second
|
|
LPOP: 93722.59 requests per second
|
|
</pre>
|
|
</div>
|
|
|
|
</div>
|
|
</div>
|
|
</body>
|
|
</html>
|
|
|