mirror of
http://github.com/valkey-io/valkey
synced 2024-11-23 11:51:01 +00:00
585 lines
16 KiB
C
585 lines
16 KiB
C
/* Hash Tables Implementation.
|
|
*
|
|
* This file implements in memory hash tables with insert/del/replace/find/
|
|
* get-random-element operations. Hash tables will auto resize if needed
|
|
* tables of power of two in size are used, collisions are handled by
|
|
* chaining. See the source code for more information... :)
|
|
*
|
|
* Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of Redis nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "fmacros.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
|
|
#include "dict.h"
|
|
#include "zmalloc.h"
|
|
|
|
/* ---------------------------- Utility funcitons --------------------------- */
|
|
|
|
static void _dictPanic(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
fprintf(stderr, "\nDICT LIBRARY PANIC: ");
|
|
vfprintf(stderr, fmt, ap);
|
|
fprintf(stderr, "\n\n");
|
|
va_end(ap);
|
|
}
|
|
|
|
/* ------------------------- Heap Management Wrappers------------------------ */
|
|
|
|
static void *_dictAlloc(size_t size)
|
|
{
|
|
void *p = zmalloc(size);
|
|
if (p == NULL)
|
|
_dictPanic("Out of memory");
|
|
return p;
|
|
}
|
|
|
|
static void _dictFree(void *ptr) {
|
|
zfree(ptr);
|
|
}
|
|
|
|
/* -------------------------- private prototypes ---------------------------- */
|
|
|
|
static int _dictExpandIfNeeded(dict *ht);
|
|
static unsigned long _dictNextPower(unsigned long size);
|
|
static int _dictKeyIndex(dict *ht, const void *key);
|
|
static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
|
|
|
|
/* -------------------------- hash functions -------------------------------- */
|
|
|
|
/* Thomas Wang's 32 bit Mix Function */
|
|
unsigned int dictIntHashFunction(unsigned int key)
|
|
{
|
|
key += ~(key << 15);
|
|
key ^= (key >> 10);
|
|
key += (key << 3);
|
|
key ^= (key >> 6);
|
|
key += ~(key << 11);
|
|
key ^= (key >> 16);
|
|
return key;
|
|
}
|
|
|
|
/* Identity hash function for integer keys */
|
|
unsigned int dictIdentityHashFunction(unsigned int key)
|
|
{
|
|
return key;
|
|
}
|
|
|
|
/* Generic hash function (a popular one from Bernstein).
|
|
* I tested a few and this was the best. */
|
|
unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
|
|
unsigned int hash = 5381;
|
|
|
|
while (len--)
|
|
hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
|
|
return hash;
|
|
}
|
|
|
|
/* ----------------------------- API implementation ------------------------- */
|
|
|
|
/* Reset an hashtable already initialized with ht_init().
|
|
* NOTE: This function should only called by ht_destroy(). */
|
|
static void _dictReset(dict *ht)
|
|
{
|
|
ht->table = NULL;
|
|
ht->size = 0;
|
|
ht->sizemask = 0;
|
|
ht->used = 0;
|
|
}
|
|
|
|
/* Create a new hash table */
|
|
dict *dictCreate(dictType *type,
|
|
void *privDataPtr)
|
|
{
|
|
dict *ht = _dictAlloc(sizeof(*ht));
|
|
|
|
_dictInit(ht,type,privDataPtr);
|
|
return ht;
|
|
}
|
|
|
|
/* Initialize the hash table */
|
|
int _dictInit(dict *ht, dictType *type,
|
|
void *privDataPtr)
|
|
{
|
|
_dictReset(ht);
|
|
ht->type = type;
|
|
ht->privdata = privDataPtr;
|
|
return DICT_OK;
|
|
}
|
|
|
|
/* Resize the table to the minimal size that contains all the elements,
|
|
* but with the invariant of a USER/BUCKETS ration near to <= 1 */
|
|
int dictResize(dict *ht)
|
|
{
|
|
int minimal = ht->used;
|
|
|
|
if (minimal < DICT_HT_INITIAL_SIZE)
|
|
minimal = DICT_HT_INITIAL_SIZE;
|
|
return dictExpand(ht, minimal);
|
|
}
|
|
|
|
/* Expand or create the hashtable */
|
|
int dictExpand(dict *ht, unsigned long size)
|
|
{
|
|
dict n; /* the new hashtable */
|
|
unsigned long realsize = _dictNextPower(size), i;
|
|
|
|
/* the size is invalid if it is smaller than the number of
|
|
* elements already inside the hashtable */
|
|
if (ht->used > size)
|
|
return DICT_ERR;
|
|
|
|
_dictInit(&n, ht->type, ht->privdata);
|
|
n.size = realsize;
|
|
n.sizemask = realsize-1;
|
|
n.table = _dictAlloc(realsize*sizeof(dictEntry*));
|
|
|
|
/* Initialize all the pointers to NULL */
|
|
memset(n.table, 0, realsize*sizeof(dictEntry*));
|
|
|
|
/* Copy all the elements from the old to the new table:
|
|
* note that if the old hash table is empty ht->size is zero,
|
|
* so dictExpand just creates an hash table. */
|
|
n.used = ht->used;
|
|
for (i = 0; i < ht->size && ht->used > 0; i++) {
|
|
dictEntry *he, *nextHe;
|
|
|
|
if (ht->table[i] == NULL) continue;
|
|
|
|
/* For each hash entry on this slot... */
|
|
he = ht->table[i];
|
|
while(he) {
|
|
unsigned int h;
|
|
|
|
nextHe = he->next;
|
|
/* Get the new element index */
|
|
h = dictHashKey(ht, he->key) & n.sizemask;
|
|
he->next = n.table[h];
|
|
n.table[h] = he;
|
|
ht->used--;
|
|
/* Pass to the next element */
|
|
he = nextHe;
|
|
}
|
|
}
|
|
assert(ht->used == 0);
|
|
_dictFree(ht->table);
|
|
|
|
/* Remap the new hashtable in the old */
|
|
*ht = n;
|
|
return DICT_OK;
|
|
}
|
|
|
|
/* Add an element to the target hash table */
|
|
int dictAdd(dict *ht, void *key, void *val)
|
|
{
|
|
int index;
|
|
dictEntry *entry;
|
|
|
|
/* Get the index of the new element, or -1 if
|
|
* the element already exists. */
|
|
if ((index = _dictKeyIndex(ht, key)) == -1)
|
|
return DICT_ERR;
|
|
|
|
/* Allocates the memory and stores key */
|
|
entry = _dictAlloc(sizeof(*entry));
|
|
entry->next = ht->table[index];
|
|
ht->table[index] = entry;
|
|
|
|
/* Set the hash entry fields. */
|
|
dictSetHashKey(ht, entry, key);
|
|
dictSetHashVal(ht, entry, val);
|
|
ht->used++;
|
|
return DICT_OK;
|
|
}
|
|
|
|
/* Add an element, discarding the old if the key already exists.
|
|
* Return 1 if the key was added from scratch, 0 if there was already an
|
|
* element with such key and dictReplace() just performed a value update
|
|
* operation. */
|
|
int dictReplace(dict *ht, void *key, void *val)
|
|
{
|
|
dictEntry *entry;
|
|
|
|
/* Try to add the element. If the key
|
|
* does not exists dictAdd will suceed. */
|
|
if (dictAdd(ht, key, val) == DICT_OK)
|
|
return 1;
|
|
/* It already exists, get the entry */
|
|
entry = dictFind(ht, key);
|
|
/* Free the old value and set the new one */
|
|
dictFreeEntryVal(ht, entry);
|
|
dictSetHashVal(ht, entry, val);
|
|
return 0;
|
|
}
|
|
|
|
/* Search and remove an element */
|
|
static int dictGenericDelete(dict *ht, const void *key, int nofree)
|
|
{
|
|
unsigned int h;
|
|
dictEntry *he, *prevHe;
|
|
|
|
if (ht->size == 0)
|
|
return DICT_ERR;
|
|
h = dictHashKey(ht, key) & ht->sizemask;
|
|
he = ht->table[h];
|
|
|
|
prevHe = NULL;
|
|
while(he) {
|
|
if (dictCompareHashKeys(ht, key, he->key)) {
|
|
/* Unlink the element from the list */
|
|
if (prevHe)
|
|
prevHe->next = he->next;
|
|
else
|
|
ht->table[h] = he->next;
|
|
if (!nofree) {
|
|
dictFreeEntryKey(ht, he);
|
|
dictFreeEntryVal(ht, he);
|
|
}
|
|
_dictFree(he);
|
|
ht->used--;
|
|
return DICT_OK;
|
|
}
|
|
prevHe = he;
|
|
he = he->next;
|
|
}
|
|
return DICT_ERR; /* not found */
|
|
}
|
|
|
|
int dictDelete(dict *ht, const void *key) {
|
|
return dictGenericDelete(ht,key,0);
|
|
}
|
|
|
|
int dictDeleteNoFree(dict *ht, const void *key) {
|
|
return dictGenericDelete(ht,key,1);
|
|
}
|
|
|
|
/* Destroy an entire hash table */
|
|
int _dictClear(dict *ht)
|
|
{
|
|
unsigned long i;
|
|
|
|
/* Free all the elements */
|
|
for (i = 0; i < ht->size && ht->used > 0; i++) {
|
|
dictEntry *he, *nextHe;
|
|
|
|
if ((he = ht->table[i]) == NULL) continue;
|
|
while(he) {
|
|
nextHe = he->next;
|
|
dictFreeEntryKey(ht, he);
|
|
dictFreeEntryVal(ht, he);
|
|
_dictFree(he);
|
|
ht->used--;
|
|
he = nextHe;
|
|
}
|
|
}
|
|
/* Free the table and the allocated cache structure */
|
|
_dictFree(ht->table);
|
|
/* Re-initialize the table */
|
|
_dictReset(ht);
|
|
return DICT_OK; /* never fails */
|
|
}
|
|
|
|
/* Clear & Release the hash table */
|
|
void dictRelease(dict *ht)
|
|
{
|
|
_dictClear(ht);
|
|
_dictFree(ht);
|
|
}
|
|
|
|
dictEntry *dictFind(dict *ht, const void *key)
|
|
{
|
|
dictEntry *he;
|
|
unsigned int h;
|
|
|
|
if (ht->size == 0) return NULL;
|
|
h = dictHashKey(ht, key) & ht->sizemask;
|
|
he = ht->table[h];
|
|
while(he) {
|
|
if (dictCompareHashKeys(ht, key, he->key))
|
|
return he;
|
|
he = he->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
dictIterator *dictGetIterator(dict *ht)
|
|
{
|
|
dictIterator *iter = _dictAlloc(sizeof(*iter));
|
|
|
|
iter->ht = ht;
|
|
iter->index = -1;
|
|
iter->entry = NULL;
|
|
iter->nextEntry = NULL;
|
|
return iter;
|
|
}
|
|
|
|
dictEntry *dictNext(dictIterator *iter)
|
|
{
|
|
while (1) {
|
|
if (iter->entry == NULL) {
|
|
iter->index++;
|
|
if (iter->index >=
|
|
(signed)iter->ht->size) break;
|
|
iter->entry = iter->ht->table[iter->index];
|
|
} else {
|
|
iter->entry = iter->nextEntry;
|
|
}
|
|
if (iter->entry) {
|
|
/* We need to save the 'next' here, the iterator user
|
|
* may delete the entry we are returning. */
|
|
iter->nextEntry = iter->entry->next;
|
|
return iter->entry;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void dictReleaseIterator(dictIterator *iter)
|
|
{
|
|
_dictFree(iter);
|
|
}
|
|
|
|
/* Return a random entry from the hash table. Useful to
|
|
* implement randomized algorithms */
|
|
dictEntry *dictGetRandomKey(dict *ht)
|
|
{
|
|
dictEntry *he;
|
|
unsigned int h;
|
|
int listlen, listele;
|
|
|
|
if (ht->used == 0) return NULL;
|
|
do {
|
|
h = random() & ht->sizemask;
|
|
he = ht->table[h];
|
|
} while(he == NULL);
|
|
|
|
/* Now we found a non empty bucket, but it is a linked
|
|
* list and we need to get a random element from the list.
|
|
* The only sane way to do so is to count the element and
|
|
* select a random index. */
|
|
listlen = 0;
|
|
while(he) {
|
|
he = he->next;
|
|
listlen++;
|
|
}
|
|
listele = random() % listlen;
|
|
he = ht->table[h];
|
|
while(listele--) he = he->next;
|
|
return he;
|
|
}
|
|
|
|
/* ------------------------- private functions ------------------------------ */
|
|
|
|
/* Expand the hash table if needed */
|
|
static int _dictExpandIfNeeded(dict *ht)
|
|
{
|
|
/* If the hash table is empty expand it to the intial size,
|
|
* if the table is "full" dobule its size. */
|
|
if (ht->size == 0)
|
|
return dictExpand(ht, DICT_HT_INITIAL_SIZE);
|
|
if (ht->used == ht->size)
|
|
return dictExpand(ht, ht->size*2);
|
|
return DICT_OK;
|
|
}
|
|
|
|
/* Our hash table capability is a power of two */
|
|
static unsigned long _dictNextPower(unsigned long size)
|
|
{
|
|
unsigned long i = DICT_HT_INITIAL_SIZE;
|
|
|
|
if (size >= LONG_MAX) return LONG_MAX;
|
|
while(1) {
|
|
if (i >= size)
|
|
return i;
|
|
i *= 2;
|
|
}
|
|
}
|
|
|
|
/* Returns the index of a free slot that can be populated with
|
|
* an hash entry for the given 'key'.
|
|
* If the key already exists, -1 is returned. */
|
|
static int _dictKeyIndex(dict *ht, const void *key)
|
|
{
|
|
unsigned int h;
|
|
dictEntry *he;
|
|
|
|
/* Expand the hashtable if needed */
|
|
if (_dictExpandIfNeeded(ht) == DICT_ERR)
|
|
return -1;
|
|
/* Compute the key hash value */
|
|
h = dictHashKey(ht, key) & ht->sizemask;
|
|
/* Search if this slot does not already contain the given key */
|
|
he = ht->table[h];
|
|
while(he) {
|
|
if (dictCompareHashKeys(ht, key, he->key))
|
|
return -1;
|
|
he = he->next;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
void dictEmpty(dict *ht) {
|
|
_dictClear(ht);
|
|
}
|
|
|
|
#define DICT_STATS_VECTLEN 50
|
|
void dictPrintStats(dict *ht) {
|
|
unsigned long i, slots = 0, chainlen, maxchainlen = 0;
|
|
unsigned long totchainlen = 0;
|
|
unsigned long clvector[DICT_STATS_VECTLEN];
|
|
|
|
if (ht->used == 0) {
|
|
printf("No stats available for empty dictionaries\n");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
|
|
for (i = 0; i < ht->size; i++) {
|
|
dictEntry *he;
|
|
|
|
if (ht->table[i] == NULL) {
|
|
clvector[0]++;
|
|
continue;
|
|
}
|
|
slots++;
|
|
/* For each hash entry on this slot... */
|
|
chainlen = 0;
|
|
he = ht->table[i];
|
|
while(he) {
|
|
chainlen++;
|
|
he = he->next;
|
|
}
|
|
clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
|
|
if (chainlen > maxchainlen) maxchainlen = chainlen;
|
|
totchainlen += chainlen;
|
|
}
|
|
printf("Hash table stats:\n");
|
|
printf(" table size: %ld\n", ht->size);
|
|
printf(" number of elements: %ld\n", ht->used);
|
|
printf(" different slots: %ld\n", slots);
|
|
printf(" max chain length: %ld\n", maxchainlen);
|
|
printf(" avg chain length (counted): %.02f\n", (float)totchainlen/slots);
|
|
printf(" avg chain length (computed): %.02f\n", (float)ht->used/slots);
|
|
printf(" Chain length distribution:\n");
|
|
for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
|
|
if (clvector[i] == 0) continue;
|
|
printf(" %s%ld: %ld (%.02f%%)\n",(i == DICT_STATS_VECTLEN-1)?">= ":"", i, clvector[i], ((float)clvector[i]/ht->size)*100);
|
|
}
|
|
}
|
|
|
|
/* ----------------------- StringCopy Hash Table Type ------------------------*/
|
|
|
|
static unsigned int _dictStringCopyHTHashFunction(const void *key)
|
|
{
|
|
return dictGenHashFunction(key, strlen(key));
|
|
}
|
|
|
|
static void *_dictStringCopyHTKeyDup(void *privdata, const void *key)
|
|
{
|
|
int len = strlen(key);
|
|
char *copy = _dictAlloc(len+1);
|
|
DICT_NOTUSED(privdata);
|
|
|
|
memcpy(copy, key, len);
|
|
copy[len] = '\0';
|
|
return copy;
|
|
}
|
|
|
|
static void *_dictStringKeyValCopyHTValDup(void *privdata, const void *val)
|
|
{
|
|
int len = strlen(val);
|
|
char *copy = _dictAlloc(len+1);
|
|
DICT_NOTUSED(privdata);
|
|
|
|
memcpy(copy, val, len);
|
|
copy[len] = '\0';
|
|
return copy;
|
|
}
|
|
|
|
static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,
|
|
const void *key2)
|
|
{
|
|
DICT_NOTUSED(privdata);
|
|
|
|
return strcmp(key1, key2) == 0;
|
|
}
|
|
|
|
static void _dictStringCopyHTKeyDestructor(void *privdata, void *key)
|
|
{
|
|
DICT_NOTUSED(privdata);
|
|
|
|
_dictFree((void*)key); /* ATTENTION: const cast */
|
|
}
|
|
|
|
static void _dictStringKeyValCopyHTValDestructor(void *privdata, void *val)
|
|
{
|
|
DICT_NOTUSED(privdata);
|
|
|
|
_dictFree((void*)val); /* ATTENTION: const cast */
|
|
}
|
|
|
|
dictType dictTypeHeapStringCopyKey = {
|
|
_dictStringCopyHTHashFunction, /* hash function */
|
|
_dictStringCopyHTKeyDup, /* key dup */
|
|
NULL, /* val dup */
|
|
_dictStringCopyHTKeyCompare, /* key compare */
|
|
_dictStringCopyHTKeyDestructor, /* key destructor */
|
|
NULL /* val destructor */
|
|
};
|
|
|
|
/* This is like StringCopy but does not auto-duplicate the key.
|
|
* It's used for intepreter's shared strings. */
|
|
dictType dictTypeHeapStrings = {
|
|
_dictStringCopyHTHashFunction, /* hash function */
|
|
NULL, /* key dup */
|
|
NULL, /* val dup */
|
|
_dictStringCopyHTKeyCompare, /* key compare */
|
|
_dictStringCopyHTKeyDestructor, /* key destructor */
|
|
NULL /* val destructor */
|
|
};
|
|
|
|
/* This is like StringCopy but also automatically handle dynamic
|
|
* allocated C strings as values. */
|
|
dictType dictTypeHeapStringCopyKeyValue = {
|
|
_dictStringCopyHTHashFunction, /* hash function */
|
|
_dictStringCopyHTKeyDup, /* key dup */
|
|
_dictStringKeyValCopyHTValDup, /* val dup */
|
|
_dictStringCopyHTKeyCompare, /* key compare */
|
|
_dictStringCopyHTKeyDestructor, /* key destructor */
|
|
_dictStringKeyValCopyHTValDestructor, /* val destructor */
|
|
};
|