mirror of
http://github.com/valkey-io/valkey
synced 2024-11-23 03:33:28 +00:00
342 lines
10 KiB
Tcl
342 lines
10 KiB
Tcl
# Compare Redis commadns against Tcl implementations of the same commands.
|
|
proc count_bits s {
|
|
binary scan $s b* bits
|
|
string length [regsub -all {0} $bits {}]
|
|
}
|
|
|
|
proc simulate_bit_op {op args} {
|
|
set maxlen 0
|
|
set j 0
|
|
set count [llength $args]
|
|
foreach a $args {
|
|
binary scan $a b* bits
|
|
set b($j) $bits
|
|
if {[string length $bits] > $maxlen} {
|
|
set maxlen [string length $bits]
|
|
}
|
|
incr j
|
|
}
|
|
for {set j 0} {$j < $count} {incr j} {
|
|
if {[string length $b($j)] < $maxlen} {
|
|
append b($j) [string repeat 0 [expr $maxlen-[string length $b($j)]]]
|
|
}
|
|
}
|
|
set out {}
|
|
for {set x 0} {$x < $maxlen} {incr x} {
|
|
set bit [string range $b(0) $x $x]
|
|
if {$op eq {not}} {set bit [expr {!$bit}]}
|
|
for {set j 1} {$j < $count} {incr j} {
|
|
set bit2 [string range $b($j) $x $x]
|
|
switch $op {
|
|
and {set bit [expr {$bit & $bit2}]}
|
|
or {set bit [expr {$bit | $bit2}]}
|
|
xor {set bit [expr {$bit ^ $bit2}]}
|
|
}
|
|
}
|
|
append out $bit
|
|
}
|
|
binary format b* $out
|
|
}
|
|
|
|
start_server {tags {"bitops"}} {
|
|
test {BITCOUNT returns 0 against non existing key} {
|
|
r bitcount no-key
|
|
} 0
|
|
|
|
catch {unset num}
|
|
foreach vec [list "" "\xaa" "\x00\x00\xff" "foobar" "123"] {
|
|
incr num
|
|
test "BITCOUNT against test vector #$num" {
|
|
r set str $vec
|
|
assert {[r bitcount str] == [count_bits $vec]}
|
|
}
|
|
}
|
|
|
|
test {BITCOUNT fuzzing without start/end} {
|
|
for {set j 0} {$j < 100} {incr j} {
|
|
set str [randstring 0 3000]
|
|
r set str $str
|
|
assert {[r bitcount str] == [count_bits $str]}
|
|
}
|
|
}
|
|
|
|
test {BITCOUNT fuzzing with start/end} {
|
|
for {set j 0} {$j < 100} {incr j} {
|
|
set str [randstring 0 3000]
|
|
r set str $str
|
|
set l [string length $str]
|
|
set start [randomInt $l]
|
|
set end [randomInt $l]
|
|
if {$start > $end} {
|
|
lassign [list $end $start] start end
|
|
}
|
|
assert {[r bitcount str $start $end] == [count_bits [string range $str $start $end]]}
|
|
}
|
|
}
|
|
|
|
test {BITCOUNT with start, end} {
|
|
r set s "foobar"
|
|
assert_equal [r bitcount s 0 -1] [count_bits "foobar"]
|
|
assert_equal [r bitcount s 1 -2] [count_bits "ooba"]
|
|
assert_equal [r bitcount s -2 1] [count_bits ""]
|
|
assert_equal [r bitcount s 0 1000] [count_bits "foobar"]
|
|
}
|
|
|
|
test {BITCOUNT syntax error #1} {
|
|
catch {r bitcount s 0} e
|
|
set e
|
|
} {ERR*syntax*}
|
|
|
|
test {BITCOUNT regression test for github issue #582} {
|
|
r del str
|
|
r setbit foo 0 1
|
|
if {[catch {r bitcount foo 0 4294967296} e]} {
|
|
assert_match {*ERR*out of range*} $e
|
|
set _ 1
|
|
} else {
|
|
set e
|
|
}
|
|
} {1}
|
|
|
|
test {BITCOUNT misaligned prefix} {
|
|
r del str
|
|
r set str ab
|
|
r bitcount str 1 -1
|
|
} {3}
|
|
|
|
test {BITCOUNT misaligned prefix + full words + remainder} {
|
|
r del str
|
|
r set str __PPxxxxxxxxxxxxxxxxRR__
|
|
r bitcount str 2 -3
|
|
} {74}
|
|
|
|
test {BITOP NOT (empty string)} {
|
|
r set s ""
|
|
r bitop not dest s
|
|
r get dest
|
|
} {}
|
|
|
|
test {BITOP NOT (known string)} {
|
|
r set s "\xaa\x00\xff\x55"
|
|
r bitop not dest s
|
|
r get dest
|
|
} "\x55\xff\x00\xaa"
|
|
|
|
test {BITOP where dest and target are the same key} {
|
|
r set s "\xaa\x00\xff\x55"
|
|
r bitop not s s
|
|
r get s
|
|
} "\x55\xff\x00\xaa"
|
|
|
|
test {BITOP AND|OR|XOR don't change the string with single input key} {
|
|
r set a "\x01\x02\xff"
|
|
r bitop and res1 a
|
|
r bitop or res2 a
|
|
r bitop xor res3 a
|
|
list [r get res1] [r get res2] [r get res3]
|
|
} [list "\x01\x02\xff" "\x01\x02\xff" "\x01\x02\xff"]
|
|
|
|
test {BITOP missing key is considered a stream of zero} {
|
|
r set a "\x01\x02\xff"
|
|
r bitop and res1 no-suck-key a
|
|
r bitop or res2 no-suck-key a no-such-key
|
|
r bitop xor res3 no-such-key a
|
|
list [r get res1] [r get res2] [r get res3]
|
|
} [list "\x00\x00\x00" "\x01\x02\xff" "\x01\x02\xff"]
|
|
|
|
test {BITOP shorter keys are zero-padded to the key with max length} {
|
|
r set a "\x01\x02\xff\xff"
|
|
r set b "\x01\x02\xff"
|
|
r bitop and res1 a b
|
|
r bitop or res2 a b
|
|
r bitop xor res3 a b
|
|
list [r get res1] [r get res2] [r get res3]
|
|
} [list "\x01\x02\xff\x00" "\x01\x02\xff\xff" "\x00\x00\x00\xff"]
|
|
|
|
foreach op {and or xor} {
|
|
test "BITOP $op fuzzing" {
|
|
for {set i 0} {$i < 10} {incr i} {
|
|
r flushall
|
|
set vec {}
|
|
set veckeys {}
|
|
set numvec [expr {[randomInt 10]+1}]
|
|
for {set j 0} {$j < $numvec} {incr j} {
|
|
set str [randstring 0 1000]
|
|
lappend vec $str
|
|
lappend veckeys vector_$j
|
|
r set vector_$j $str
|
|
}
|
|
r bitop $op target {*}$veckeys
|
|
assert_equal [r get target] [simulate_bit_op $op {*}$vec]
|
|
}
|
|
}
|
|
}
|
|
|
|
test {BITOP NOT fuzzing} {
|
|
for {set i 0} {$i < 10} {incr i} {
|
|
r flushall
|
|
set str [randstring 0 1000]
|
|
r set str $str
|
|
r bitop not target str
|
|
assert_equal [r get target] [simulate_bit_op not $str]
|
|
}
|
|
}
|
|
|
|
test {BITOP with integer encoded source objects} {
|
|
r set a 1
|
|
r set b 2
|
|
r bitop xor dest a b a
|
|
r get dest
|
|
} {2}
|
|
|
|
test {BITOP with non string source key} {
|
|
r del c
|
|
r set a 1
|
|
r set b 2
|
|
r lpush c foo
|
|
catch {r bitop xor dest a b c d} e
|
|
set e
|
|
} {WRONGTYPE*}
|
|
|
|
test {BITOP with empty string after non empty string (issue #529)} {
|
|
r flushdb
|
|
r set a "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
r bitop or x a b
|
|
} {32}
|
|
|
|
test {BITPOS bit=0 with empty key returns 0} {
|
|
r del str
|
|
r bitpos str 0
|
|
} {0}
|
|
|
|
test {BITPOS bit=1 with empty key returns -1} {
|
|
r del str
|
|
r bitpos str 1
|
|
} {-1}
|
|
|
|
test {BITPOS bit=0 with string less than 1 word works} {
|
|
r set str "\xff\xf0\x00"
|
|
r bitpos str 0
|
|
} {12}
|
|
|
|
test {BITPOS bit=1 with string less than 1 word works} {
|
|
r set str "\x00\x0f\x00"
|
|
r bitpos str 1
|
|
} {12}
|
|
|
|
test {BITPOS bit=0 starting at unaligned address} {
|
|
r set str "\xff\xf0\x00"
|
|
r bitpos str 0 1
|
|
} {12}
|
|
|
|
test {BITPOS bit=1 starting at unaligned address} {
|
|
r set str "\x00\x0f\xff"
|
|
r bitpos str 1 1
|
|
} {12}
|
|
|
|
test {BITPOS bit=0 unaligned+full word+reminder} {
|
|
r del str
|
|
r set str "\xff\xff\xff" ; # Prefix
|
|
# Followed by two (or four in 32 bit systems) full words
|
|
r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
|
|
# First zero bit.
|
|
r append str "\x0f"
|
|
assert {[r bitpos str 0] == 216}
|
|
assert {[r bitpos str 0 1] == 216}
|
|
assert {[r bitpos str 0 2] == 216}
|
|
assert {[r bitpos str 0 3] == 216}
|
|
assert {[r bitpos str 0 4] == 216}
|
|
assert {[r bitpos str 0 5] == 216}
|
|
assert {[r bitpos str 0 6] == 216}
|
|
assert {[r bitpos str 0 7] == 216}
|
|
assert {[r bitpos str 0 8] == 216}
|
|
}
|
|
|
|
test {BITPOS bit=1 unaligned+full word+reminder} {
|
|
r del str
|
|
r set str "\x00\x00\x00" ; # Prefix
|
|
# Followed by two (or four in 32 bit systems) full words
|
|
r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
|
|
# First zero bit.
|
|
r append str "\xf0"
|
|
assert {[r bitpos str 1] == 216}
|
|
assert {[r bitpos str 1 1] == 216}
|
|
assert {[r bitpos str 1 2] == 216}
|
|
assert {[r bitpos str 1 3] == 216}
|
|
assert {[r bitpos str 1 4] == 216}
|
|
assert {[r bitpos str 1 5] == 216}
|
|
assert {[r bitpos str 1 6] == 216}
|
|
assert {[r bitpos str 1 7] == 216}
|
|
assert {[r bitpos str 1 8] == 216}
|
|
}
|
|
|
|
test {BITPOS bit=1 returns -1 if string is all 0 bits} {
|
|
r set str ""
|
|
for {set j 0} {$j < 20} {incr j} {
|
|
assert {[r bitpos str 1] == -1}
|
|
r append str "\x00"
|
|
}
|
|
}
|
|
|
|
test {BITPOS bit=0 works with intervals} {
|
|
r set str "\x00\xff\x00"
|
|
assert {[r bitpos str 0 0 -1] == 0}
|
|
assert {[r bitpos str 0 1 -1] == 16}
|
|
assert {[r bitpos str 0 2 -1] == 16}
|
|
assert {[r bitpos str 0 2 200] == 16}
|
|
assert {[r bitpos str 0 1 1] == -1}
|
|
}
|
|
|
|
test {BITPOS bit=1 works with intervals} {
|
|
r set str "\x00\xff\x00"
|
|
assert {[r bitpos str 1 0 -1] == 8}
|
|
assert {[r bitpos str 1 1 -1] == 8}
|
|
assert {[r bitpos str 1 2 -1] == -1}
|
|
assert {[r bitpos str 1 2 200] == -1}
|
|
assert {[r bitpos str 1 1 1] == 8}
|
|
}
|
|
|
|
test {BITPOS bit=0 changes behavior if end is given} {
|
|
r set str "\xff\xff\xff"
|
|
assert {[r bitpos str 0] == 24}
|
|
assert {[r bitpos str 0 0] == 24}
|
|
assert {[r bitpos str 0 0 -1] == -1}
|
|
}
|
|
|
|
test {BITPOS bit=1 fuzzy testing using SETBIT} {
|
|
r del str
|
|
set max 524288; # 64k
|
|
set first_one_pos -1
|
|
for {set j 0} {$j < 1000} {incr j} {
|
|
assert {[r bitpos str 1] == $first_one_pos}
|
|
set pos [randomInt $max]
|
|
r setbit str $pos 1
|
|
if {$first_one_pos == -1 || $first_one_pos > $pos} {
|
|
# Update the position of the first 1 bit in the array
|
|
# if the bit we set is on the left of the previous one.
|
|
set first_one_pos $pos
|
|
}
|
|
}
|
|
}
|
|
|
|
test {BITPOS bit=0 fuzzy testing using SETBIT} {
|
|
set max 524288; # 64k
|
|
set first_zero_pos $max
|
|
r set str [string repeat "\xff" [expr $max/8]]
|
|
for {set j 0} {$j < 1000} {incr j} {
|
|
assert {[r bitpos str 0] == $first_zero_pos}
|
|
set pos [randomInt $max]
|
|
r setbit str $pos 0
|
|
if {$first_zero_pos > $pos} {
|
|
# Update the position of the first 0 bit in the array
|
|
# if the bit we clear is on the left of the previous one.
|
|
set first_zero_pos $pos
|
|
}
|
|
}
|
|
}
|
|
}
|