uv-k5-firmware-chinese-lts/app/mdc1200.c

587 lines
17 KiB
C
Raw Normal View History

2023-12-03 04:27:34 +00:00
#include "driver/bk4819.h"
#include "driver/crc.h"
2023-12-04 08:23:42 +00:00
#include "driver/uart.h"
2023-12-03 04:27:34 +00:00
#include "mdc1200.h"
#include "misc.h"
#include <string.h>
2023-12-09 16:03:48 +00:00
#include "driver/eeprom.h"
uint16_t MDC_ID = 0X542B;
2023-12-03 04:27:34 +00:00
const uint8_t mdc1200_pre_amble[] = {0x00, 0x00, 0x00};
2023-12-09 16:03:48 +00:00
const uint8_t mdc1200_sync[5] = {0x07, 0x09, 0x2a, 0x44, 0x6f};
2023-12-03 04:27:34 +00:00
uint8_t mdc1200_sync_suc_xor[sizeof(mdc1200_sync)];
2023-12-06 13:53:43 +00:00
#if 1
2023-12-03 04:27:34 +00:00
2023-12-09 16:03:48 +00:00
uint16_t compute_crc(const void *data, const unsigned int data_len) { // let the CPU's hardware do some work :)
2023-12-03 04:27:34 +00:00
uint16_t crc;
CRC_InitReverse();
crc = CRC_Calculate(data, data_len);
CRC_Init();
return crc;
}
#elif 1
2023-12-05 12:19:43 +00:00
uint16_t compute_crc( void *data, const unsigned int data_len) { // let the CPU's hardware do some work :)
2023-12-03 04:27:34 +00:00
2023-12-05 12:19:43 +00:00
return CRC_Calculate(data, data_len);
}
//uint16_t compute_crc( void *data, const unsigned int data_len)
// { // using the reverse computation and polynominal avoids having to reverse the bit order during and after
// unsigned int i;
// uint8_t *data8 = ( uint8_t *)data;
// uint16_t crc = 0;
// for (i = 0; i < data_len; i++)
// {
// unsigned int k;
// crc ^= data8[i];
// for (k = 8; k > 0; k--)
// crc = (crc & 1u) ? (crc >> 1) ^ 0x8408 : crc >> 1;
// }
// return crc ^ 0xffff;
// }
2023-12-03 04:27:34 +00:00
#else
2023-12-09 16:03:48 +00:00
uint16_t compute_crc(const void *data, const unsigned int data_len)
{
unsigned int i;
const uint8_t *data8 = (const uint8_t *)data;
uint16_t crc = 0;
for (i = 0; i < data_len; i++)
{
uint8_t mask;
// bit reverse each data byte
const uint8_t bits = bit_reverse_8(*data8++);
for (mask = 0x0080; mask != 0; mask >>= 1)
{
uint16_t msb = crc & 0x8000;
if (bits & mask)
msb ^= 0x8000;
crc <<= 1;
if (msb)
crc ^= 0x1021;
}
}
// bit reverse and invert the final CRC
return bit_reverse_16(crc) ^ 0xffff;
}
2023-12-03 04:27:34 +00:00
#endif
2023-12-09 16:03:48 +00:00
void error_correction(void *data) { // can correct up to 3 or 4 corrupted bits (I think)
2023-12-03 04:27:34 +00:00
2023-12-09 16:03:48 +00:00
int i;
2023-12-03 04:27:34 +00:00
uint8_t shift_reg;
uint8_t syn;
2023-12-09 16:03:48 +00:00
uint8_t *data8 = (uint8_t *) data;
2023-12-03 04:27:34 +00:00
2023-12-09 16:03:48 +00:00
for (i = 0, shift_reg = 0, syn = 0; i < MDC1200_FEC_K; i++) {
2023-12-03 04:27:34 +00:00
const uint8_t bi = data8[i];
int bit_num;
2023-12-09 16:03:48 +00:00
for (bit_num = 0; bit_num < 8; bit_num++) {
2023-12-03 04:27:34 +00:00
uint8_t b;
unsigned int k = 0;
shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u);
2023-12-09 16:03:48 +00:00
b = ((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u;
syn = (syn << 1) | (((b ^ (data8[i + MDC1200_FEC_K] >> bit_num)) & 1u) ? 1u : 0u);
2023-12-03 04:27:34 +00:00
if (syn & 0x80) k++;
if (syn & 0x20) k++;
if (syn & 0x04) k++;
if (syn & 0x02) k++;
2023-12-09 16:03:48 +00:00
if (k >= 3) { // correct a bit error
2023-12-03 04:27:34 +00:00
int ii = i;
int bn = bit_num - 7;
2023-12-09 16:03:48 +00:00
if (bn < 0) {
2023-12-03 04:27:34 +00:00
bn += 8;
ii--;
}
if (ii >= 0)
data8[ii] ^= 1u << bn; // fix a bit
syn ^= 0xA6; // 10100110
}
}
}
}
2023-12-09 16:03:48 +00:00
bool decode_data(void *data) {
2023-12-03 04:27:34 +00:00
uint16_t crc1;
uint16_t crc2;
2023-12-09 16:03:48 +00:00
uint8_t *data8 = (uint8_t *) data;
2023-12-03 04:27:34 +00:00
2023-12-09 16:03:48 +00:00
{ // de-interleave
2023-12-03 04:27:34 +00:00
unsigned int i;
unsigned int k;
unsigned int m;
uint8_t deinterleaved[(MDC1200_FEC_K * 2) * 8]; // temp individual bit storage
// interleave order
// 0, 16, 32, 48, 64, 80, 96,
// 1, 17, 33, 49, 65, 81, 97,
// 2, 18, 34, 50, 66, 82, 98,
// 3, 19, 35, 51, 67, 83, 99,
// 4, 20, 36, 52, 68, 84, 100,
// 5, 21, 37, 53, 69, 85, 101,
// 6, 22, 38, 54, 70, 86, 102,
// 7, 23, 39, 55, 71, 87, 103,
// 8, 24, 40, 56, 72, 88, 104,
// 9, 25, 41, 57, 73, 89, 105,
// 10, 26, 42, 58, 74, 90, 106,
// 11, 27, 43, 59, 75, 91, 107,
// 12, 28, 44, 60, 76, 92, 108,
// 13, 29, 45, 61, 77, 93, 109,
// 14, 30, 46, 62, 78, 94, 110,
// 15, 31, 47, 63, 79, 95, 111
// de-interleave the received bits
2023-12-09 16:03:48 +00:00
for (i = 0, k = 0; i < 16; i++) {
for (m = 0; m < MDC1200_FEC_K; m++) {
2023-12-03 04:27:34 +00:00
const unsigned int n = (m * 16) + i;
deinterleaved[k++] = (data8[n >> 3] >> ((7 - n) & 7u)) & 1u;
}
}
// copy the de-interleaved bits back into the data buffer
2023-12-09 16:03:48 +00:00
for (i = 0, m = 0; i < (MDC1200_FEC_K * 2); i++) {
2023-12-03 04:27:34 +00:00
unsigned int k;
uint8_t b = 0;
for (k = 0; k < 8; k++)
if (deinterleaved[m++])
b |= 1u << k;
data8[i] = b;
}
}
// try to correct the odd corrupted bit
error_correction(data);
// rx'ed de-interleaved data (min 14 bytes) looks like this ..
//
// OP ARG ID CRC STATUS FEC bits
// 01 80 1234 2E3E 00 6580A862DD8808
crc1 = compute_crc(data, 4);
2023-12-09 16:03:48 +00:00
crc2 = ((uint16_t) data8[5] << 8) | (data8[4] << 0);
2023-12-03 04:27:34 +00:00
return (crc1 == crc2) ? true : false;
}
// **********************************************************
// TX
2023-12-09 16:03:48 +00:00
void xor_modulation(void *data, const unsigned int size) { // exclusive-or succesive bits - the entire packet
2023-12-03 04:27:34 +00:00
unsigned int i;
2023-12-09 16:03:48 +00:00
uint8_t *data8 = (uint8_t *) data;
2023-12-03 04:27:34 +00:00
uint8_t prev_bit = 0;
2023-12-09 16:03:48 +00:00
for (i = 0; i < size; i++) {
2023-12-03 04:27:34 +00:00
int bit_num;
2023-12-09 16:03:48 +00:00
uint8_t in = data8[i];
2023-12-03 04:27:34 +00:00
uint8_t out = 0;
2023-12-09 16:03:48 +00:00
for (bit_num = 7; bit_num >= 0; bit_num--) {
2023-12-03 04:27:34 +00:00
const uint8_t new_bit = (in >> bit_num) & 1u;
if (new_bit != prev_bit)
out |= 1u << bit_num; // previous bit and new bit are different - send a '1'
prev_bit = new_bit;
}
data8[i] = out ^ 0xff;
}
}
2023-12-09 16:03:48 +00:00
uint8_t *encode_data(void *data) {
2023-12-03 04:27:34 +00:00
// R=1/2 K=7 convolutional coder
//
// OP ARG ID CRC STATUS FEC bits
// 01 80 1234 2E3E 00 6580A862DD8808
//
// 1. reverse the bit order for each byte of the first 7 bytes (to undo the reversal performed for display, above)
// 2. feed those bits into a shift register which is preloaded with all zeros
// 3. for each bit, calculate the modulo-2 sum: bit(n-0) + bit(n-2) + bit(n-5) + bit(n-6)
// 4. then for each byte of resulting output, again reverse those bits to generate the values shown above
2023-12-09 16:03:48 +00:00
uint8_t *data8 = (uint8_t *) data;
2023-12-03 04:27:34 +00:00
2023-12-09 16:03:48 +00:00
{ // add the FEC bits to the end of the data
2023-12-03 04:27:34 +00:00
unsigned int i;
uint8_t shift_reg = 0;
2023-12-09 16:03:48 +00:00
for (i = 0; i < MDC1200_FEC_K; i++) {
unsigned int bit_num;
2023-12-03 04:27:34 +00:00
const uint8_t bi = data8[i];
2023-12-09 16:03:48 +00:00
uint8_t bo = 0;
for (bit_num = 0; bit_num < 8; bit_num++) {
2023-12-03 04:27:34 +00:00
shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u);
bo |= (((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u) << bit_num;
}
data8[MDC1200_FEC_K + i] = bo;
}
}
2023-12-09 16:03:48 +00:00
{ // interleave the bits
2023-12-03 04:27:34 +00:00
unsigned int i;
unsigned int k;
uint8_t interleaved[(MDC1200_FEC_K * 2) * 8]; // temp individual bit storage
// interleave order
// 0, 16, 32, 48, 64, 80, 96,
// 1, 17, 33, 49, 65, 81, 97,
// 2, 18, 34, 50, 66, 82, 98,
// 3, 19, 35, 51, 67, 83, 99,
// 4, 20, 36, 52, 68, 84, 100,
// 5, 21, 37, 53, 69, 85, 101,
// 6, 22, 38, 54, 70, 86, 102,
// 7, 23, 39, 55, 71, 87, 103,
// 8, 24, 40, 56, 72, 88, 104,
// 9, 25, 41, 57, 73, 89, 105,
// 10, 26, 42, 58, 74, 90, 106,
// 11, 27, 43, 59, 75, 91, 107,
// 12, 28, 44, 60, 76, 92, 108,
// 13, 29, 45, 61, 77, 93, 109,
// 14, 30, 46, 62, 78, 94, 110,
// 15, 31, 47, 63, 79, 95, 111
// bit interleaver
2023-12-09 16:03:48 +00:00
for (i = 0, k = 0; i < (MDC1200_FEC_K * 2); i++) {
2023-12-03 04:27:34 +00:00
unsigned int bit_num;
const uint8_t b = data8[i];
2023-12-09 16:03:48 +00:00
for (bit_num = 0; bit_num < 8; bit_num++) {
2023-12-03 04:27:34 +00:00
interleaved[k] = (b >> bit_num) & 1u;
k += 16;
if (k >= sizeof(interleaved))
k -= sizeof(interleaved) - 1;
}
}
// copy the interleaved bits back to the data buffer
2023-12-09 16:03:48 +00:00
for (i = 0, k = 0; i < (MDC1200_FEC_K * 2); i++) {
2023-12-03 04:27:34 +00:00
int bit_num;
uint8_t b = 0;
for (bit_num = 7; bit_num >= 0; bit_num--)
if (interleaved[k++])
b |= 1u << bit_num;
data8[i] = b;
}
}
return data8 + (MDC1200_FEC_K * 2);
}
2023-12-09 16:03:48 +00:00
unsigned int MDC1200_encode_single_packet(void *data, const uint8_t op, const uint8_t arg, const uint16_t unit_id) {
2023-12-03 04:27:34 +00:00
unsigned int size;
2023-12-09 16:03:48 +00:00
uint16_t crc;
uint8_t *p = (uint8_t *) data;
2023-12-03 04:27:34 +00:00
memcpy(p, mdc1200_pre_amble, sizeof(mdc1200_pre_amble));
p += sizeof(mdc1200_pre_amble);
memcpy(p, mdc1200_sync, sizeof(mdc1200_sync));
p += sizeof(mdc1200_sync);
p[0] = op;
p[1] = arg;
p[2] = (unit_id >> 8) & 0x00ff;
p[3] = (unit_id >> 0) & 0x00ff;
crc = compute_crc(p, 4);
p[4] = (crc >> 0) & 0x00ff;
p[5] = (crc >> 8) & 0x00ff;
p[6] = 0; // unknown field (00 for PTTIDs, 76 for STS and MSG)
p = encode_data(p);
2023-12-09 16:03:48 +00:00
size = (unsigned int) (p - (uint8_t *) data);
2023-12-03 04:27:34 +00:00
xor_modulation(data, size);
return size;
}
struct {
2023-12-09 16:03:48 +00:00
uint8_t bit;
uint8_t prev_bit;
uint8_t xor_bit;
uint64_t shift_reg;
2023-12-03 04:27:34 +00:00
unsigned int bit_count;
unsigned int stage;
2023-12-09 16:03:48 +00:00
bool inverted_sync;
2023-12-03 04:27:34 +00:00
unsigned int data_index;
2023-12-09 16:03:48 +00:00
uint8_t data[40];
2023-12-03 04:27:34 +00:00
} rx;
2023-12-09 16:03:48 +00:00
void MDC1200_reset_rx(void) {
2023-12-03 04:27:34 +00:00
memset(&rx, 0, sizeof(rx));
}
bool MDC1200_process_rx_data(
const void *buffer,
const unsigned int size,
//const bool inverted,
uint8_t *op,
uint8_t *arg,
2023-12-09 16:03:48 +00:00
uint16_t *unit_id) {
const uint8_t *buffer8 = (const uint8_t *) buffer;
unsigned int index;
2023-12-03 04:27:34 +00:00
// 04 8D BF 66 58 sync
// FB 72 40 99 A7 inverted sync
//
// 04 8D BF 66 58 40 C4 B0 32 BA F9 33 18 35 08 83 F6 0C 36 .. 80 87 20 23 2C AE 22 10 26 0F 02 A4 08 24
// 04 8D BF 66 58 45 DB 03 07 BC FA 35 2E 33 0E 83 0E 83 69 .. 86 92 02 05 28 AC 26 34 22 0B 02 0B 02 4E
memset(&rx, 0, sizeof(rx));
2023-12-09 16:03:48 +00:00
for (index = 0; index < size; index++) {
int bit;
2023-12-03 04:27:34 +00:00
const uint8_t rx_byte = buffer8[index];
2023-12-09 16:03:48 +00:00
for (bit = 7; bit >= 0; bit--) {
2023-12-03 04:27:34 +00:00
unsigned int i;
rx.prev_bit = rx.bit;
rx.bit = (rx_byte >> bit) & 1u;
rx.xor_bit = (rx.xor_bit ^ rx.bit) & 1u; // toggle our bit if the rx bit is high
rx.shift_reg = (rx.shift_reg << 1) | rx.xor_bit;
rx.bit_count++;
// *********
2023-12-09 16:03:48 +00:00
if (rx.stage == 0) { // looking for the 40-bit sync pattern
2023-12-03 04:27:34 +00:00
const unsigned int sync_bit_ok_threshold = 32;
2023-12-09 16:03:48 +00:00
if (rx.bit_count >= 40) {
2023-12-03 04:27:34 +00:00
// 40-bit sync pattern
uint64_t sync_nor = 0x07092a446fu; // normal
uint64_t sync_inv = 0xffffffffffu ^ sync_nor; // bit inverted
sync_nor ^= rx.shift_reg;
sync_inv ^= rx.shift_reg;
unsigned int nor_count = 0;
unsigned int inv_count = 0;
2023-12-09 16:03:48 +00:00
for (i = 40; i > 0; i--, sync_nor >>= 1, sync_inv >>= 1) {
2023-12-03 04:27:34 +00:00
nor_count += sync_nor & 1u;
inv_count += sync_inv & 1u;
}
nor_count = 40 - nor_count;
inv_count = 40 - inv_count;
2023-12-09 16:03:48 +00:00
if (nor_count >= sync_bit_ok_threshold || inv_count >= sync_bit_ok_threshold) { // good enough
2023-12-03 04:27:34 +00:00
rx.inverted_sync = (inv_count > nor_count) ? true : false;
2023-12-09 16:03:48 +00:00
rx.data_index = 0;
rx.bit_count = 0;
rx.stage = 1;
2023-12-03 04:27:34 +00:00
}
}
continue;
}
if (rx.bit_count < 8)
continue;
rx.bit_count = 0;
rx.data[rx.data_index++] = rx.shift_reg & 0xff; // save the last 8 bits
if (rx.data_index < (MDC1200_FEC_K * 2))
continue;
2023-12-09 16:03:48 +00:00
if (!decode_data(rx.data)) {
2023-12-03 04:27:34 +00:00
MDC1200_reset_rx();
continue;
}
// extract the info from the packet
2023-12-09 16:03:48 +00:00
*op = rx.data[0];
*arg = rx.data[1];
*unit_id = ((uint16_t) rx.data[2] << 8) | (rx.data[3] << 0);
2023-12-03 04:27:34 +00:00
// reset the detector
MDC1200_reset_rx();
return true;
}
}
MDC1200_reset_rx();
return false;
}
2023-12-09 16:03:48 +00:00
uint8_t mdc1200_rx_buffer[sizeof(mdc1200_sync_suc_xor) + (MDC1200_FEC_K * 2)];
2023-12-03 04:27:34 +00:00
unsigned int mdc1200_rx_buffer_index = 0;
2023-12-09 16:03:48 +00:00
uint8_t mdc1200_op;
uint8_t mdc1200_arg;
2023-12-03 04:27:34 +00:00
uint16_t mdc1200_unit_id;
2023-12-09 16:03:48 +00:00
uint8_t mdc1200_rx_ready_tick_500ms;
void MDC1200_process_rx(const uint16_t interrupt_bits) {
2023-12-09 16:03:48 +00:00
const uint16_t rx_sync_flags = BK4819_ReadRegister(0x0B);
const uint16_t fsk_reg59 = BK4819_ReadRegister(0x59) & ~((1u << 15) | (1u << 14) | (1u << 12) | (1u << 11));
2023-12-03 04:27:34 +00:00
2023-12-09 16:03:48 +00:00
const bool rx_sync = (interrupt_bits & BK4819_REG_02_FSK_RX_SYNC) ? true : false;
const bool rx_sync_neg = (rx_sync_flags & (1u << 7)) ? true : false;
2023-12-03 04:27:34 +00:00
const bool rx_fifo_almost_full = (interrupt_bits & BK4819_REG_02_FSK_FIFO_ALMOST_FULL) ? true : false;
2023-12-09 16:03:48 +00:00
const bool rx_finished = (interrupt_bits & BK4819_REG_02_FSK_RX_FINISHED) ? true : false;
2023-12-03 04:27:34 +00:00
2023-12-09 16:03:48 +00:00
if (rx_sync) {
2023-12-03 04:27:34 +00:00
mdc1200_rx_buffer_index = 0;
{
unsigned int i;
memset(mdc1200_rx_buffer, 0, sizeof(mdc1200_rx_buffer));
for (i = 0; i < sizeof(mdc1200_sync_suc_xor); i++)
mdc1200_rx_buffer[mdc1200_rx_buffer_index++] = mdc1200_sync_suc_xor[i] ^ (rx_sync_neg ? 0xFF : 0x00);
}
}
2023-12-09 16:03:48 +00:00
if (rx_fifo_almost_full) {
2023-12-03 04:27:34 +00:00
unsigned int i;
const unsigned int count = BK4819_ReadRegister(0x5E) & (7u << 0); // almost full threshold
// fetch received packet data
2023-12-09 16:03:48 +00:00
for (i = 0; i < count; i++) {
2023-12-03 04:27:34 +00:00
const uint16_t word = BK4819_ReadRegister(0x5F) ^ (rx_sync_neg ? 0xFFFF : 0x0000);
if (mdc1200_rx_buffer_index < sizeof(mdc1200_rx_buffer))
mdc1200_rx_buffer[mdc1200_rx_buffer_index++] = (word >> 0) & 0xff;
if (mdc1200_rx_buffer_index < sizeof(mdc1200_rx_buffer))
mdc1200_rx_buffer[mdc1200_rx_buffer_index++] = (word >> 8) & 0xff;
}
2023-12-09 16:03:48 +00:00
if (mdc1200_rx_buffer_index >= sizeof(mdc1200_rx_buffer)) {
2023-12-03 04:27:34 +00:00
BK4819_WriteRegister(0x59, (1u << 15) | (1u << 14) | fsk_reg59);
BK4819_WriteRegister(0x59, (1u << 12) | fsk_reg59);
2023-12-03 04:27:34 +00:00
if (MDC1200_process_rx_data(
mdc1200_rx_buffer,
mdc1200_rx_buffer_index,
&mdc1200_op,
&mdc1200_arg,
&mdc1200_unit_id)) {
2023-12-05 12:19:43 +00:00
mdc1200_rx_ready_tick_500ms = 2 * 5; // 6 second MDC display time
2023-12-03 04:27:34 +00:00
gUpdateDisplay = true;
}
mdc1200_rx_buffer_index = 0;
}
}
2023-12-09 16:03:48 +00:00
if (rx_finished) {
2023-12-03 04:27:34 +00:00
mdc1200_rx_buffer_index = 0;
BK4819_WriteRegister(0x59, (1u << 15) | (1u << 14) | fsk_reg59);
BK4819_WriteRegister(0x59, (1u << 12) | fsk_reg59);
}
2023-12-04 08:28:38 +00:00
2023-12-03 04:27:34 +00:00
}
2023-12-09 16:03:48 +00:00
void MDC1200_init(void) {
2023-12-03 04:27:34 +00:00
memcpy(mdc1200_sync_suc_xor, mdc1200_sync, sizeof(mdc1200_sync));
xor_modulation(mdc1200_sync_suc_xor, sizeof(mdc1200_sync_suc_xor));
MDC1200_reset_rx();
}
2023-12-09 16:03:48 +00:00
2023-12-04 11:06:08 +00:00
uint16_t extractHex(const char *str) {
uint16_t result = 0;
while (*str) {
char c = *str++;
if (c >= '0' && c <= '9') {
result = (result << 4) | (c - '0');
} else if (c >= 'A' && c <= 'F') {
result = (result << 4) | (c - 'A' + 10);
} else {
2023-12-04 11:43:28 +00:00
continue; // 遇到非十六进制字符,停止解析
2023-12-04 11:06:08 +00:00
}
}
return result;
2023-12-09 16:03:48 +00:00
}
uint8_t contact_num=0;
uint16_t MDC_ADD[4] = {0x1D48, 0x1D88, 0x1DC8,0x1F08};
void mdc1200_update_contact_num()
{
EEPROM_ReadBuffer(MDC_NUM_ADD, (uint8_t *)&contact_num, 1);
if(contact_num>MAX_CONTACT_NUM)contact_num=0;
}
bool mdc1200_contact_find(uint16_t mdc_id, char *contact) {
mdc1200_update_contact_num();
uint8_t add = 0;
for (uint8_t i = 0; i < contact_num; i++) {
uint8_t read_once[16]={0};
if ((i & 3) == 0 && i) add++;
EEPROM_ReadBuffer(MDC_ADD[add] + i * 16, read_once, 16);
2023-12-09 16:06:04 +00:00
if (mdc_id == (uint16_t) (read_once[1] | (read_once[0] << 8))) {
2023-12-09 16:03:48 +00:00
for (int j = 0; j < 14; ++j) {
if(read_once[2+j]<' '||read_once[2+j]>'~')
return false;
memcpy(contact,read_once+2,14);
}
return true;
}
}
return false;
}
//uint8_t A[64];
// memset(A,'A',6*16);
// for (int i = MDC_ADD1; i < MDC_ADD1+64; ++i) {
// EEPROM_WriteBuffer(i,&A[i-MDC_ADD1]);
// }
//
// for (int i = MDC_ADD2+72; i <MDC_ADD2+64; ++i) {
// EEPROM_WriteBuffer(i,&A[i-MDC_ADD2]);
// }
// for (int i =MDC_ADD3; i < MDC_ADD3+64; ++i) {
// EEPROM_WriteBuffer(i,&A[i-MDC_ADD3]);
// }
// for (int i =MDC_ADD4; i < MDC_ADD4+64; ++i) {
// EEPROM_WriteBuffer(i,&A[i-MDC_ADD4]);
// }
// EEPROM_ReadBuffer(MDC_ADD1, A, sizeof(A));
// UART_Send(A,64);
// EEPROM_ReadBuffer(MDC_ADD2, A, sizeof(A));
// UART_Send(A,64);
// EEPROM_ReadBuffer(MDC_ADD3, A, sizeof(A));
// UART_Send(A,64);
// EEPROM_ReadBuffer(MDC_ADD4, A, sizeof(A));
// UART_Send(A,64);