This commit is contained in:
wu58430 2023-12-05 17:52:23 +08:00
parent 8a0d2e38e8
commit 8981ea1af7
19 changed files with 910 additions and 1055 deletions

View file

@ -34,7 +34,6 @@ ENABLE_SHOW_CHARGE_LEVEL := 0
ENABLE_REVERSE_BAT_SYMBOL := 0 ENABLE_REVERSE_BAT_SYMBOL := 0
ENABLE_NO_CODE_SCAN_TIMEOUT := 1 ENABLE_NO_CODE_SCAN_TIMEOUT := 1
ENABLE_AM_FIX := 1 ENABLE_AM_FIX := 1
ENABLE_AM_FIX_SHOW_DATA := 0
ENABLE_SQUELCH_MORE_SENSITIVE := 1 ENABLE_SQUELCH_MORE_SENSITIVE := 1
ENABLE_FASTER_CHANNEL_SCAN := 1 ENABLE_FASTER_CHANNEL_SCAN := 1
ENABLE_RSSI_BAR := 1 ENABLE_RSSI_BAR := 1
@ -48,7 +47,9 @@ ENABLE_SCAN_RANGES := 1
ENABLE_MDC1200 := 1 ENABLE_MDC1200 := 1
ENABLE_MDC1200_SHOW_OP_ARG := 0 ENABLE_MDC1200_SHOW_OP_ARG := 0
ENABLE_MDC1200_SIDE_BEEP := 0 ENABLE_MDC1200_SIDE_BEEP := 0
# ---- DEBUGGING ----
ENABLE_AM_FIX_SHOW_DATA := 0
ENABLE_AGC_SHOW_DATA := 0
############################################################# #############################################################
@ -76,9 +77,7 @@ ifeq ($(ENABLE_OVERLAY),1)
OBJS += sram-overlay.o OBJS += sram-overlay.o
endif endif
OBJS += external/printf/printf.o OBJS += external/printf/printf.o
ifeq ($(ENABLE_MDC1200),1)
OBJS += app/mdc1200.o
endif
# Drivers # Drivers
OBJS += driver/adc.o OBJS += driver/adc.o
ifeq ($(ENABLE_UART),1) ifeq ($(ENABLE_UART),1)
@ -157,6 +156,9 @@ OBJS += ui/inputbox.o
ifeq ($(ENABLE_PWRON_PASSWORD),1) ifeq ($(ENABLE_PWRON_PASSWORD),1)
OBJS += ui/lock.o OBJS += ui/lock.o
endif endif
ifeq ($(ENABLE_MDC1200),1)
OBJS += app/mdc1200.o
endif
OBJS += ui/main.o OBJS += ui/main.o
OBJS += ui/menu.o OBJS += ui/menu.o
OBJS += ui/scanner.o OBJS += ui/scanner.o
@ -187,17 +189,15 @@ else # unix
endif endif
AS = arm-none-eabi-gcc AS = arm-none-eabi-gcc
CC =
LD = arm-none-eabi-gcc LD = arm-none-eabi-gcc
ifeq ($(ENABLE_CLANG),0) ifeq ($(ENABLE_CLANG),0)
CC += arm-none-eabi-gcc CC = arm-none-eabi-gcc
# Use GCC's linker to avoid undefined symbol errors # Use GCC's linker to avoid undefined symbol errors
# LD += arm-none-eabi-gcc # LD += arm-none-eabi-gcc
else else
# May need to adjust this to match your system # May need to adjust this to match your system
CC += clang --sysroot=/usr/arm-none-eabi --target=arm-none-eabi CC = clang --sysroot=/usr/arm-none-eabi --target=arm-none-eabi
# Bloats binaries to 512MB # Bloats binaries to 512MB
# LD = ld.lld # LD = ld.lld
endif endif
@ -224,30 +224,23 @@ endif
CFLAGS = CFLAGS =
ifeq ($(ENABLE_CLANG),0) ifeq ($(ENABLE_CLANG),0)
CFLAGS += -Os -Wall -Werror -mcpu=cortex-m0 -fno-builtin -fshort-enums -fno-delete-null-pointer-checks -std=c11 -MMD CFLAGS += -Os -Wall -Werror -mcpu=cortex-m0 -fno-builtin -fshort-enums -fno-delete-null-pointer-checks -std=c2x -MMD
#CFLAGS += -Os -Wall -Werror -mcpu=cortex-m0 -fno-builtin -fshort-enums -fno-delete-null-pointer-checks -std=c11 -MMD
#CFLAGS += -Os -Wall -Werror -mcpu=cortex-m0 -fno-builtin -fshort-enums -fno-delete-null-pointer-checks -std=c99 -MMD #CFLAGS += -Os -Wall -Werror -mcpu=cortex-m0 -fno-builtin -fshort-enums -fno-delete-null-pointer-checks -std=c99 -MMD
#CFLAGS += -Os -Wall -Werror -mcpu=cortex-m0 -fno-builtin -fshort-enums -fno-delete-null-pointer-checks -std=gnu99 -MMD #CFLAGS += -Os -Wall -Werror -mcpu=cortex-m0 -fno-builtin -fshort-enums -fno-delete-null-pointer-checks -std=gnu99 -MMD
#CFLAGS += -Os -Wall -Werror -mcpu=cortex-m0 -fno-builtin -fshort-enums -fno-delete-null-pointer-checks -std=gnu11 -MMD #CFLAGS += -Os -Wall -Werror -mcpu=cortex-m0 -fno-builtin -fshort-enums -fno-delete-null-pointer-checks -std=gnu11 -MMD
else else
# Oz needed to make it fit on flash # Oz needed to make it fit on flash
CFLAGS += -Oz -Wall -Werror -mcpu=cortex-m0 -fno-builtin -fshort-enums -fno-delete-null-pointer-checks -std=c11 -MMD CFLAGS += -Oz -Wall -Werror -mcpu=cortex-m0 -fno-builtin -fshort-enums -fno-delete-null-pointer-checks -std=c2x -MMD
endif endif
ifeq ($(ENABLE_LTO),1) ifeq ($(ENABLE_LTO),1)
CFLAGS += -flto=2 CFLAGS += -flto=auto
else else
# We get most of the space savings if LTO creates problems # We get most of the space savings if LTO creates problems
CFLAGS += -ffunction-sections -fdata-sections CFLAGS += -ffunction-sections -fdata-sections
endif endif
ifeq ($(ENABLE_MDC1200),1)
CFLAGS += -DENABLE_MDC1200
endif
ifeq ($(ENABLE_MDC1200_SHOW_OP_ARG),1)
CFLAGS += -DENABLE_MDC1200_SHOW_OP_ARG
endif
ifeq ($(ENABLE_MDC1200_SIDE_BEEP),1)
CFLAGS += -DENABLE_MDC1200_SIDE_BEEP
endif
# May cause unhelpful build failures # May cause unhelpful build failures
#CFLAGS += -Wpadded #CFLAGS += -Wpadded
@ -372,23 +365,24 @@ endif
ifeq ($(ENABLE_DTMF_CALLING),1) ifeq ($(ENABLE_DTMF_CALLING),1)
CFLAGS += -DENABLE_DTMF_CALLING CFLAGS += -DENABLE_DTMF_CALLING
endif endif
ifeq ($(ENABLE_AGC_SHOW_DATA),1)
LDFLAGS = CFLAGS += -DENABLE_AGC_SHOW_DATA
ifeq ($(ENABLE_CLANG),0)
LDFLAGS += -mcpu=cortex-m0 -nostartfiles -Wl,-T,firmware.ld
else
# Fix warning about implied executable stack
LDFLAGS += -z noexecstack -mcpu=cortex-m0 -nostartfiles -Wl,-T,firmware.ld
endif endif
ifeq ($(ENABLE_MDC1200),1)
CFLAGS += -DENABLE_MDC1200
endif
ifeq ($(ENABLE_MDC1200_SHOW_OP_ARG),1)
CFLAGS += -DENABLE_MDC1200_SHOW_OP_ARG
endif
ifeq ($(ENABLE_MDC1200_SIDE_BEEP),1)
CFLAGS += -DENABLE_MDC1200_SIDE_BEEP
endif
LDFLAGS =
LDFLAGS += -z noexecstack -mcpu=cortex-m0 -nostartfiles -Wl,-T,firmware.ld -Wl,--gc-sections
# Use newlib-nano instead of newlib # Use newlib-nano instead of newlib
LDFLAGS += --specs=nano.specs LDFLAGS += --specs=nano.specs
ifeq ($(ENABLE_LTO),0)
# Throw away unneeded func/data sections like LTO does
LDFLAGS += -Wl,--gc-sections
endif
ifeq ($(DEBUG),1) ifeq ($(DEBUG),1)
ASFLAGS += -g ASFLAGS += -g
CFLAGS += -g CFLAGS += -g

732
am_fix.c
View file

@ -32,458 +32,360 @@
#ifdef ENABLE_AM_FIX #ifdef ENABLE_AM_FIX
typedef struct typedef struct
{ {
uint16_t reg_val; uint16_t reg_val;
int8_t gain_dB; int8_t gain_dB;
} __attribute__((packed)) t_gain_table; } __attribute__((packed)) t_gain_table;
// REG_10 AGC gain table // REG_10 AGC gain table
// //
// <15:10> ??? // <15:10> ???
// //
// <9:8> = LNA Gain Short // <9:8> = LNA Gain Short
// 3 = 0dB < original value // 3 = 0dB < original value
// 2 = -24dB // was -11 // 2 = -19dB // was -11
// 1 = -30dB // was -16 // 1 = -24dB // was -16
// 0 = -33dB // was -19 // 0 = -28dB // was -19
// //
// <7:5> = LNA Gain // <7:5> = LNA Gain
// 7 = 0dB // 7 = 0dB
// 6 = -2dB // 6 = -2dB
// 5 = -4dB < original value // 5 = -4dB < original value
// 4 = -6dB // 4 = -6dB
// 3 = -9dB // 3 = -9dB
// 2 = -14dB // 2 = -14dB
// 1 = -19dB // 1 = -19dB
// 0 = -24dB // 0 = -24dB
// //
// <4:3> = MIXER Gain // <4:3> = MIXER Gain
// 3 = 0dB < original value // 3 = 0dB < original value
// 2 = -3dB // 2 = -3dB
// 1 = -6dB // 1 = -6dB
// 0 = -8dB // 0 = -8dB
// //
// <2:0> = PGA Gain // <2:0> = PGA Gain
// 7 = 0dB // 7 = 0dB
// 6 = -3dB < original value // 6 = -3dB < original value
// 5 = -6dB // 5 = -6dB
// 4 = -9dB // 4 = -9dB
// 3 = -15dB // 3 = -15dB
// 2 = -21dB // 2 = -21dB
// 1 = -27dB // 1 = -27dB
// 0 = -33dB // 0 = -33dB
// front end register dB values // front end register dB values
// //
// these values need to be accurate for the code to properly/reliably switch // these values need to be accurate for the code to properly/reliably switch
// between table entries when adjusting the front end registers. // between table entries when adjusting the front end registers.
// //
// these 4 tables need a measuring/calibration update // these 4 tables need a measuring/calibration update
// //
//
// QUESTION: why do I have to surround the negative numbers in brackets ???
// if I don't add the brackets, reading the table returns unexpected/different values !!!
//
//
//// static const int16_t lna_short_dB[] = { -19, -16, -11, 0}; // was (but wrong) //// static const int16_t lna_short_dB[] = { -19, -16, -11, 0}; // was (but wrong)
// static const int16_t lna_short_dB[] = { (-33), (-30), (-24), 0}; // corrected'ish // static const int16_t lna_short_dB[] = { (-28), (-24), (-19), 0}; // corrected'ish
// static const int16_t lna_dB[] = { (-24), (-19), (-14), ( -9), (-6), (-4), (-2), 0}; // static const int16_t lna_dB[] = { (-24), (-19), (-14), ( -9), (-6), (-4), (-2), 0};
// static const int16_t mixer_dB[] = { ( -8), ( -6), ( -3), 0}; // static const int16_t mixer_dB[] = { ( -8), ( -6), ( -3), 0};
// static const int16_t pga_dB[] = { (-33), (-27), (-21), (-15), (-9), (-6), (-3), 0}; // static const int16_t pga_dB[] = { (-33), (-27), (-21), (-15), (-9), (-6), (-3), 0};
// lookup table is hugely easier than writing code to do the same // lookup table is hugely easier than writing code to do the same
// //
static const t_gain_table gain_table[] = static const t_gain_table gain_table[] =
{ {
{0x035E, -17}, // 0 .. 3 2 3 6 .. 0dB -14dB 0dB -3dB .. -17dB original {0x03BE, -7}, // 0 .. 3 5 3 6 .. 0dB -4dB 0dB -3dB .. -7dB original
#ifdef ENABLE_AM_FIX_TEST1 {0x0000,-93}, // 1 .. 0 0 0 0 .. -28dB -24dB -8dB -33dB .. -93dB
{0x0008,-91}, // 2 .. 0 0 1 0 .. -28dB -24dB -6dB -33dB .. -91dB
{0x0100,-89}, // 3 .. 1 0 0 0 .. -24dB -24dB -8dB -33dB .. -89dB
{0x0020,-88}, // 4 .. 0 1 0 0 .. -28dB -19dB -8dB -33dB .. -88dB
{0x0108,-87}, // 5 .. 1 0 1 0 .. -24dB -24dB -6dB -33dB .. -87dB
{0x0028,-86}, // 6 .. 0 1 1 0 .. -28dB -19dB -6dB -33dB .. -86dB
{0x0018,-85}, // 7 .. 0 0 3 0 .. -28dB -24dB 0dB -33dB .. -85dB
{0x0200,-84}, // 8 .. 2 0 0 0 .. -19dB -24dB -8dB -33dB .. -84dB
{0x0101,-83}, // 9 .. 1 0 0 1 .. -24dB -24dB -8dB -27dB .. -83dB
{0x0208,-82}, // 10 .. 2 0 1 0 .. -19dB -24dB -6dB -33dB .. -82dB
{0x0118,-81}, // 11 .. 1 0 3 0 .. -24dB -24dB 0dB -33dB .. -81dB
{0x0038,-80}, // 12 .. 0 1 3 0 .. -28dB -19dB 0dB -33dB .. -80dB
{0x0220,-79}, // 13 .. 2 1 0 0 .. -19dB -19dB -8dB -33dB .. -79dB
{0x0201,-78}, // 14 .. 2 0 0 1 .. -19dB -24dB -8dB -27dB .. -78dB
{0x0228,-77}, // 15 .. 2 1 1 0 .. -19dB -19dB -6dB -33dB .. -77dB
{0x0218,-76}, // 16 .. 2 0 3 0 .. -19dB -24dB 0dB -33dB .. -76dB
{0x0119,-75}, // 17 .. 1 0 3 1 .. -24dB -24dB 0dB -27dB .. -75dB
{0x0240,-74}, // 18 .. 2 2 0 0 .. -19dB -14dB -8dB -33dB .. -74dB
{0x0221,-73}, // 19 .. 2 1 0 1 .. -19dB -19dB -8dB -27dB .. -73dB
{0x0248,-72}, // 20 .. 2 2 1 0 .. -19dB -14dB -6dB -33dB .. -72dB
{0x0238,-71}, // 21 .. 2 1 3 0 .. -19dB -19dB 0dB -33dB .. -71dB
{0x0219,-70}, // 22 .. 2 0 3 1 .. -19dB -24dB 0dB -27dB .. -70dB
{0x0260,-69}, // 23 .. 2 3 0 0 .. -19dB -9dB -8dB -33dB .. -69dB
{0x0241,-68}, // 24 .. 2 2 0 1 .. -19dB -14dB -8dB -27dB .. -68dB
{0x0268,-67}, // 25 .. 2 3 1 0 .. -19dB -9dB -6dB -33dB .. -67dB
{0x0280,-66}, // 26 .. 2 4 0 0 .. -19dB -6dB -8dB -33dB .. -66dB
{0x0300,-65}, // 27 .. 3 0 0 0 .. 0dB -24dB -8dB -33dB .. -65dB
{0x02A0,-64}, // 28 .. 2 5 0 0 .. -19dB -4dB -8dB -33dB .. -64dB
{0x0308,-63}, // 29 .. 3 0 1 0 .. 0dB -24dB -6dB -33dB .. -63dB
{0x02C0,-62}, // 30 .. 2 6 0 0 .. -19dB -2dB -8dB -33dB .. -62dB
{0x0290,-61}, // 31 .. 2 4 2 0 .. -19dB -6dB -3dB -33dB .. -61dB
{0x0320,-60}, // 32 .. 3 1 0 0 .. 0dB -19dB -8dB -33dB .. -60dB
{0x0301,-59}, // 33 .. 3 0 0 1 .. 0dB -24dB -8dB -27dB .. -59dB
{0x0328,-58}, // 34 .. 3 1 1 0 .. 0dB -19dB -6dB -33dB .. -58dB
{0x0318,-57}, // 35 .. 3 0 3 0 .. 0dB -24dB 0dB -33dB .. -57dB
{0x02C1,-56}, // 36 .. 2 6 0 1 .. -19dB -2dB -8dB -27dB .. -56dB
{0x0340,-55}, // 37 .. 3 2 0 0 .. 0dB -14dB -8dB -33dB .. -55dB
{0x0321,-54}, // 38 .. 3 1 0 1 .. 0dB -19dB -8dB -27dB .. -54dB
{0x0348,-53}, // 39 .. 3 2 1 0 .. 0dB -14dB -6dB -33dB .. -53dB
{0x0338,-52}, // 40 .. 3 1 3 0 .. 0dB -19dB 0dB -33dB .. -52dB
{0x0319,-51}, // 41 .. 3 0 3 1 .. 0dB -24dB 0dB -27dB .. -51dB
{0x0360,-50}, // 42 .. 3 3 0 0 .. 0dB -9dB -8dB -33dB .. -50dB
{0x0341,-49}, // 43 .. 3 2 0 1 .. 0dB -14dB -8dB -27dB .. -49dB
{0x0368,-48}, // 44 .. 3 3 1 0 .. 0dB -9dB -6dB -33dB .. -48dB
{0x0380,-47}, // 45 .. 3 4 0 0 .. 0dB -6dB -8dB -33dB .. -47dB
{0x0339,-46}, // 46 .. 3 1 3 1 .. 0dB -19dB 0dB -27dB .. -46dB
{0x03A0,-45}, // 47 .. 3 5 0 0 .. 0dB -4dB -8dB -33dB .. -45dB
{0x0361,-44}, // 48 .. 3 3 0 1 .. 0dB -9dB -8dB -27dB .. -44dB
{0x03C0,-43}, // 49 .. 3 6 0 0 .. 0dB -2dB -8dB -33dB .. -43dB
{0x0390,-42}, // 50 .. 3 4 2 0 .. 0dB -6dB -3dB -33dB .. -42dB
{0x03E0,-41}, // 51 .. 3 7 0 0 .. 0dB 0dB -8dB -33dB .. -41dB
{0x03B0,-40}, // 52 .. 3 5 2 0 .. 0dB -4dB -3dB -33dB .. -40dB
{0x03E8,-39}, // 53 .. 3 7 1 0 .. 0dB 0dB -6dB -33dB .. -39dB
{0x03D0,-38}, // 54 .. 3 6 2 0 .. 0dB -2dB -3dB -33dB .. -38dB
{0x03C1,-37}, // 55 .. 3 6 0 1 .. 0dB -2dB -8dB -27dB .. -37dB
{0x03F0,-36}, // 56 .. 3 7 2 0 .. 0dB 0dB -3dB -33dB .. -36dB
{0x03E1,-35}, // 57 .. 3 7 0 1 .. 0dB 0dB -8dB -27dB .. -35dB
{0x03B1,-34}, // 58 .. 3 5 2 1 .. 0dB -4dB -3dB -27dB .. -34dB
{0x03F8,-33}, // 59 .. 3 7 3 0 .. 0dB 0dB 0dB -33dB .. -33dB
{0x03D1,-32}, // 60 .. 3 6 2 1 .. 0dB -2dB -3dB -27dB .. -32dB
{0x03C2,-31}, // 61 .. 3 6 0 2 .. 0dB -2dB -8dB -21dB .. -31dB
{0x03F1,-30}, // 62 .. 3 7 2 1 .. 0dB 0dB -3dB -27dB .. -30dB
{0x03E2,-29}, // 63 .. 3 7 0 2 .. 0dB 0dB -8dB -21dB .. -29dB
{0x03B2,-28}, // 64 .. 3 5 2 2 .. 0dB -4dB -3dB -21dB .. -28dB
{0x03F9,-27}, // 65 .. 3 7 3 1 .. 0dB 0dB 0dB -27dB .. -27dB
{0x03D2,-26}, // 66 .. 3 6 2 2 .. 0dB -2dB -3dB -21dB .. -26dB
{0x03C3,-25}, // 67 .. 3 6 0 3 .. 0dB -2dB -8dB -15dB .. -25dB
{0x03F2,-24}, // 68 .. 3 7 2 2 .. 0dB 0dB -3dB -21dB .. -24dB
{0x03E3,-23}, // 69 .. 3 7 0 3 .. 0dB 0dB -8dB -15dB .. -23dB
{0x03B3,-22}, // 70 .. 3 5 2 3 .. 0dB -4dB -3dB -15dB .. -22dB
{0x03FA,-21}, // 71 .. 3 7 3 2 .. 0dB 0dB 0dB -21dB .. -21dB
{0x03D3,-20}, // 72 .. 3 6 2 3 .. 0dB -2dB -3dB -15dB .. -20dB
{0x03C4,-19}, // 73 .. 3 6 0 4 .. 0dB -2dB -8dB -9dB .. -19dB
{0x03F3,-18}, // 74 .. 3 7 2 3 .. 0dB 0dB -3dB -15dB .. -18dB
{0x03E4,-17}, // 75 .. 3 7 0 4 .. 0dB 0dB -8dB -9dB .. -17dB
{0x03C5,-16}, // 76 .. 3 6 0 5 .. 0dB -2dB -8dB -6dB .. -16dB
{0x03FB,-15}, // 77 .. 3 7 3 3 .. 0dB 0dB 0dB -15dB .. -15dB
{0x03E5,-14}, // 78 .. 3 7 0 5 .. 0dB 0dB -8dB -6dB .. -14dB
{0x03C6,-13}, // 79 .. 3 6 0 6 .. 0dB -2dB -8dB -3dB .. -13dB
{0x03F4,-12}, // 80 .. 3 7 2 4 .. 0dB 0dB -3dB -9dB .. -12dB
{0x03E6,-11}, // 81 .. 3 7 0 6 .. 0dB 0dB -8dB -3dB .. -11dB
{0x03C7,-10}, // 82 .. 3 6 0 7 .. 0dB -2dB -8dB 0dB .. -10dB
{0x03FC, -9}, // 83 .. 3 7 3 4 .. 0dB 0dB 0dB -9dB .. -9dB
{0x03E7, -8}, // 84 .. 3 7 0 7 .. 0dB 0dB -8dB 0dB .. -8dB
{0x03BE, -7}, // 85 .. 3 5 3 6 .. 0dB -4dB 0dB -3dB .. -7dB original
{0x03FD, -6}, // 86 .. 3 7 3 5 .. 0dB 0dB 0dB -6dB .. -6dB
{0x03DE, -5}, // 87 .. 3 6 3 6 .. 0dB -2dB 0dB -3dB .. -5dB
{0x03BF, -4}, // 88 .. 3 5 3 7 .. 0dB -4dB 0dB 0dB .. -4dB
{0x03FE, -3}, // 89 .. 3 7 3 6 .. 0dB 0dB 0dB -3dB .. -3dB
{0x03DF, -2}, // 90 .. 3 6 3 7 .. 0dB -2dB 0dB 0dB .. -2dB
{0x03FF, 0}, // 91 .. 3 7 3 7 .. 0dB 0dB 0dB 0dB .. 0dB
};
// test table that lets me manually set the lna-short register static const unsigned int original_index = 90;
// to measure it's actual dB change using an RF signal generator
{0x005E, -50}, // 1 .. 0 2 3 6 .. -33dB -14dB 0dB -3dB .. -50dB
{0x015E, -47}, // 2 .. 1 2 3 6 .. -30dB -14dB 0dB -3dB .. -47dB
{0x025E, -41}, // 3 .. 2 2 3 6 .. -24dB -14dB 0dB -3dB .. -41dB
{0x035E, -17} // 4 .. 3 2 3 6 .. 0dB -14dB 0dB -3dB .. -17dB original
};
static const unsigned int original_index = 1;
#else
{0x0000, -98}, // 1 .. 0 0 0 0 .. -33dB -24dB -8dB -33dB .. -98dB
{0x0008, -96}, // 2 .. 0 0 1 0 .. -33dB -24dB -6dB -33dB .. -96dB
{0x0100, -95}, // 3 .. 1 0 0 0 .. -30dB -24dB -8dB -33dB .. -95dB
{0x0020, -93}, // 4 .. 0 1 0 0 .. -33dB -19dB -8dB -33dB .. -93dB
{0x0001, -92}, // 5 .. 0 0 0 1 .. -33dB -24dB -8dB -27dB .. -92dB
{0x0028, -91}, // 6 .. 0 1 1 0 .. -33dB -19dB -6dB -33dB .. -91dB
{0x0009, -90}, // 7 .. 0 0 1 1 .. -33dB -24dB -6dB -27dB .. -90dB
{0x0101, -89}, // 8 .. 1 0 0 1 .. -30dB -24dB -8dB -27dB .. -89dB
{0x0030, -88}, // 9 .. 0 1 2 0 .. -33dB -19dB -3dB -33dB .. -88dB
{0x0118, -87}, // 10 .. 1 0 3 0 .. -30dB -24dB 0dB -33dB .. -87dB
{0x0002, -86}, // 11 .. 0 0 0 2 .. -33dB -24dB -8dB -21dB .. -86dB
{0x0130, -85}, // 12 .. 1 1 2 0 .. -30dB -19dB -3dB -33dB .. -85dB
{0x0019, -84}, // 13 .. 0 0 3 1 .. -33dB -24dB 0dB -27dB .. -84dB
{0x0060, -83}, // 14 .. 0 3 0 0 .. -33dB -9dB -8dB -33dB .. -83dB
{0x0138, -82}, // 15 .. 1 1 3 0 .. -30dB -19dB 0dB -33dB .. -82dB
{0x0119, -81}, // 16 .. 1 0 3 1 .. -30dB -24dB 0dB -27dB .. -81dB
{0x0058, -80}, // 17 .. 0 2 3 0 .. -33dB -14dB 0dB -33dB .. -80dB
{0x0141, -79}, // 18 .. 1 2 0 1 .. -30dB -14dB -8dB -27dB .. -79dB
{0x0070, -78}, // 19 .. 0 3 2 0 .. -33dB -9dB -3dB -33dB .. -78dB
{0x0180, -77}, // 20 .. 1 4 0 0 .. -30dB -6dB -8dB -33dB .. -77dB
{0x0139, -76}, // 21 .. 1 1 3 1 .. -30dB -19dB 0dB -27dB .. -76dB
{0x0013, -75}, // 22 .. 0 0 2 3 .. -33dB -24dB -3dB -15dB .. -75dB
{0x0161, -74}, // 23 .. 1 3 0 1 .. -30dB -9dB -8dB -27dB .. -74dB
{0x01C0, -73}, // 24 .. 1 6 0 0 .. -30dB -2dB -8dB -33dB .. -73dB
{0x00E8, -72}, // 25 .. 0 7 1 0 .. -33dB 0dB -6dB -33dB .. -72dB
{0x00D0, -71}, // 26 .. 0 6 2 0 .. -33dB -2dB -3dB -33dB .. -71dB
{0x0239, -70}, // 27 .. 2 1 3 1 .. -24dB -19dB 0dB -27dB .. -70dB
{0x006A, -69}, // 28 .. 0 3 1 2 .. -33dB -9dB -6dB -21dB .. -69dB
{0x0006, -68}, // 29 .. 0 0 0 6 .. -33dB -24dB -8dB -3dB .. -68dB
{0x00B1, -67}, // 30 .. 0 5 2 1 .. -33dB -4dB -3dB -27dB .. -67dB
{0x000E, -66}, // 31 .. 0 0 1 6 .. -33dB -24dB -6dB -3dB .. -66dB
{0x015A, -65}, // 32 .. 1 2 3 2 .. -30dB -14dB 0dB -21dB .. -65dB
{0x022B, -64}, // 33 .. 2 1 1 3 .. -24dB -19dB -6dB -15dB .. -64dB
{0x01F8, -63}, // 34 .. 1 7 3 0 .. -30dB 0dB 0dB -33dB .. -63dB
{0x0163, -62}, // 35 .. 1 3 0 3 .. -30dB -9dB -8dB -15dB .. -62dB
{0x0035, -61}, // 36 .. 0 1 2 5 .. -33dB -19dB -3dB -6dB .. -61dB
{0x0214, -60}, // 37 .. 2 0 2 4 .. -24dB -24dB -3dB -9dB .. -60dB
{0x01D9, -59}, // 38 .. 1 6 3 1 .. -30dB -2dB 0dB -27dB .. -59dB
{0x0145, -58}, // 39 .. 1 2 0 5 .. -30dB -14dB -8dB -6dB .. -58dB
{0x02A2, -57}, // 40 .. 2 5 0 2 .. -24dB -4dB -8dB -21dB .. -57dB
{0x02D1, -56}, // 41 .. 2 6 2 1 .. -24dB -2dB -3dB -27dB .. -56dB
{0x00B3, -55}, // 42 .. 0 5 2 3 .. -33dB -4dB -3dB -15dB .. -55dB
{0x0216, -54}, // 43 .. 2 0 2 6 .. -24dB -24dB -3dB -3dB .. -54dB
{0x0066, -53}, // 44 .. 0 3 0 6 .. -33dB -9dB -8dB -3dB .. -53dB
{0x00C4, -52}, // 45 .. 0 6 0 4 .. -33dB -2dB -8dB -9dB .. -52dB
{0x006E, -51}, // 46 .. 0 3 1 6 .. -33dB -9dB -6dB -3dB .. -51dB
{0x015D, -50}, // 47 .. 1 2 3 5 .. -30dB -14dB 0dB -6dB .. -50dB
{0x00AD, -49}, // 48 .. 0 5 1 5 .. -33dB -4dB -6dB -6dB .. -49dB
{0x007D, -48}, // 49 .. 0 3 3 5 .. -33dB -9dB 0dB -6dB .. -48dB
{0x00D4, -47}, // 50 .. 0 6 2 4 .. -33dB -2dB -3dB -9dB .. -47dB
{0x01B4, -46}, // 51 .. 1 5 2 4 .. -30dB -4dB -3dB -9dB .. -46dB
{0x030B, -45}, // 52 .. 3 0 1 3 .. 0dB -24dB -6dB -15dB .. -45dB
{0x00CE, -44}, // 53 .. 0 6 1 6 .. -33dB -2dB -6dB -3dB .. -44dB
{0x01B5, -43}, // 54 .. 1 5 2 5 .. -30dB -4dB -3dB -6dB .. -43dB
{0x0097, -42}, // 55 .. 0 4 2 7 .. -33dB -6dB -3dB 0dB .. -42dB
{0x0257, -41}, // 56 .. 2 2 2 7 .. -24dB -14dB -3dB 0dB .. -41dB
{0x02B4, -40}, // 57 .. 2 5 2 4 .. -24dB -4dB -3dB -9dB .. -40dB
{0x027D, -39}, // 58 .. 2 3 3 5 .. -24dB -9dB 0dB -6dB .. -39dB
{0x01DD, -38}, // 59 .. 1 6 3 5 .. -30dB -2dB 0dB -6dB .. -38dB
{0x02AE, -37}, // 60 .. 2 5 1 6 .. -24dB -4dB -6dB -3dB .. -37dB
{0x0379, -36}, // 61 .. 3 3 3 1 .. 0dB -9dB 0dB -27dB .. -36dB
{0x035A, -35}, // 62 .. 3 2 3 2 .. 0dB -14dB 0dB -21dB .. -35dB
{0x02B6, -34}, // 63 .. 2 5 2 6 .. -24dB -4dB -3dB -3dB .. -34dB
{0x030E, -33}, // 64 .. 3 0 1 6 .. 0dB -24dB -6dB -3dB .. -33dB
{0x0307, -32}, // 65 .. 3 0 0 7 .. 0dB -24dB -8dB 0dB .. -32dB
{0x02BE, -31}, // 66 .. 2 5 3 6 .. -24dB -4dB 0dB -3dB .. -31dB
{0x037A, -30}, // 67 .. 3 3 3 2 .. 0dB -9dB 0dB -21dB .. -30dB
{0x02DE, -29}, // 68 .. 2 6 3 6 .. -24dB -2dB 0dB -3dB .. -29dB
{0x0345, -28}, // 69 .. 3 2 0 5 .. 0dB -14dB -8dB -6dB .. -28dB
{0x03A3, -27}, // 70 .. 3 5 0 3 .. 0dB -4dB -8dB -15dB .. -27dB
{0x0364, -26}, // 71 .. 3 3 0 4 .. 0dB -9dB -8dB -9dB .. -26dB
{0x032F, -25}, // 72 .. 3 1 1 7 .. 0dB -19dB -6dB 0dB .. -25dB
{0x0393, -24}, // 73 .. 3 4 2 3 .. 0dB -6dB -3dB -15dB .. -24dB
{0x0384, -23}, // 74 .. 3 4 0 4 .. 0dB -6dB -8dB -9dB .. -23dB
{0x0347, -22}, // 75 .. 3 2 0 7 .. 0dB -14dB -8dB 0dB .. -22dB
{0x03EB, -21}, // 76 .. 3 7 1 3 .. 0dB 0dB -6dB -15dB .. -21dB
{0x03D3, -20}, // 77 .. 3 6 2 3 .. 0dB -2dB -3dB -15dB .. -20dB
{0x03BB, -19}, // 78 .. 3 5 3 3 .. 0dB -4dB 0dB -15dB .. -19dB
{0x037C, -18}, // 79 .. 3 3 3 4 .. 0dB -9dB 0dB -9dB .. -18dB
{0x03CC, -17}, // 80 .. 3 6 1 4 .. 0dB -2dB -6dB -9dB .. -17dB
{0x03C5, -16}, // 81 .. 3 6 0 5 .. 0dB -2dB -8dB -6dB .. -16dB
{0x03EC, -15}, // 82 .. 3 7 1 4 .. 0dB 0dB -6dB -9dB .. -15dB
{0x035F, -14}, // 83 .. 3 2 3 7 .. 0dB -14dB 0dB 0dB .. -14dB
{0x03BC, -13}, // 84 .. 3 5 3 4 .. 0dB -4dB 0dB -9dB .. -13dB
{0x038F, -12}, // 85 .. 3 4 1 7 .. 0dB -6dB -6dB 0dB .. -12dB
{0x03E6, -11}, // 86 .. 3 7 0 6 .. 0dB 0dB -8dB -3dB .. -11dB
{0x03AF, -10}, // 87 .. 3 5 1 7 .. 0dB -4dB -6dB 0dB .. -10dB
{0x03F5, -9 }, // 88 .. 3 7 2 5 .. 0dB 0dB -3dB -6dB .. -9dB
{0x03D6, -8 }, // 89 .. 3 6 2 6 .. 0dB -2dB -3dB -3dB .. -8dB
{0x03BE, -7 }, // 90 .. 3 5 3 6 .. 0dB -4dB 0dB -3dB .. -7dB original
{0x03F6, -6 }, // 91 .. 3 7 2 6 .. 0dB 0dB -3dB -3dB .. -6dB
{0x03DE, -5 }, // 92 .. 3 6 3 6 .. 0dB -2dB 0dB -3dB .. -5dB
{0x03BF, -4 }, // 93 .. 3 5 3 7 .. 0dB -4dB 0dB 0dB .. -4dB
{0x03F7, -3 }, // 94 .. 3 7 2 7 .. 0dB 0dB -3dB 0dB .. -3dB
{0x03DF, -2 }, // 95 .. 3 6 3 7 .. 0dB -2dB 0dB 0dB .. -2dB
{0x03FF, 0 }, // 96 .. 3 7 3 7 .. 0dB 0dB 0dB 0dB .. 0dB
};
static const unsigned int original_index = 90;
#ifdef ENABLE_AM_FIX_SHOW_DATA
// display update rate
static const unsigned int display_update_rate = 250 / 10; // max 250ms display update rate
unsigned int counter = 0;
#endif #endif
unsigned int gain_table_index[2] = {original_index, original_index};
// used simply to detect a changed gain setting
unsigned int gain_table_index_prev[2] = {0, 0};
// holds the previous RSSI level .. we do an average of old + new RSSI reading
int16_t prev_rssi[2] = {0, 0};
// to help reduce gain hunting, peak hold count down tick
unsigned int hold_counter[2] = {0, 0};
// used to correct the RSSI readings after our RF gain adjustments
int16_t rssi_gain_diff[2] = {0, 0};
// used to limit the max RF gain
const unsigned max_index = ARRAY_SIZE(gain_table) - 1;
// -89dBm, any higher and the AM demodulator starts to saturate/clip/distort
const int16_t desired_rssi = (-89 + 160) * 2;
void AM_fix_init(void)
{ // called at boot-up
for (int i = 0; i < 2; i++) {
gain_table_index[i] = original_index; // re-start with original QS setting
}
}
void AM_fix_reset(const unsigned vfo)
{ // reset the AM fixer upper
if (vfo > 1)
return;
#ifdef ENABLE_AM_FIX_SHOW_DATA #ifdef ENABLE_AM_FIX_SHOW_DATA
// display update rate counter = 0;
static const unsigned int display_update_rate = 250 / 10; // max 250ms display update rate
unsigned int counter = 0;
#endif #endif
#ifdef ENABLE_AM_FIX_TEST1 prev_rssi[vfo] = 0;
// user manually sets the table index .. used to calibrate the desired dB gain table hold_counter[vfo] = 0;
unsigned int gain_table_index[2] = {1 + gSetting_AM_fix_test1, 1 + gSetting_AM_fix_test1}; rssi_gain_diff[vfo] = 0;
#else gain_table_index_prev[vfo] = 0;
unsigned int gain_table_index[2] = {original_index, original_index}; }
#endif
// used simply to detect a changed gain setting // adjust the RX gain to try and prevent the AM demodulator from
unsigned int gain_table_index_prev[2] = {0, 0}; // saturating/overloading/clipping (distorted AM audio)
//
// we're actually doing the BK4819's job for it here, but as the chip
// won't/don't do it for itself, we're left to bodging it ourself by
// playing with the RF front end gain setting
//
void AM_fix_10ms(const unsigned vfo, bool force)
{
if(vfo > 1)
return;
// holds the previous RSSI level .. we do an average of old + new RSSI reading if(!force) switch (gCurrentFunction)
int16_t prev_rssi[2] = {0, 0}; {
case FUNCTION_TRANSMIT:
case FUNCTION_BAND_SCOPE:
case FUNCTION_POWER_SAVE:
case FUNCTION_FOREGROUND:
#ifdef ENABLE_AM_FIX_SHOW_DATA
counter = display_update_rate; // queue up a display update as soon as we switch to RX mode
#endif
AM_fix_reset(vfo);
return;
// to help reduce gain hunting, peak hold count down tick // only adjust stuff if we're in one of these modes
unsigned int hold_counter[2] = {0, 0}; case FUNCTION_RECEIVE:
case FUNCTION_MONITOR:
case FUNCTION_INCOMING:
break;
}
// used to correct the RSSI readings after our RF gain adjustments #ifdef ENABLE_AM_FIX_SHOW_DATA
int16_t rssi_gain_diff[2] = {0, 0}; if (counter > 0) {
if (++counter >= display_update_rate) { // trigger a display update
// used to limit the max RF gain counter = 0;
unsigned int max_index = ARRAY_SIZE(gain_table) - 1; gUpdateDisplay = true;
#ifndef ENABLE_AM_FIX_TEST1
// -89dBm, any higher and the AM demodulator starts to saturate/clip/distort
const int16_t desired_rssi = (-89 + 160) * 2;
#endif
void AM_fix_init(void)
{ // called at boot-up
unsigned int i;
for (i = 0; i < 2; i++)
{
#ifdef ENABLE_AM_FIX_TEST1
gain_table_index[i] = 1 + gSetting_AM_fix_test1;
#else
gain_table_index[i] = original_index; // re-start with original QS setting
#endif
} }
}
#endif
#if 0 int16_t rssi;
{ // set a maximum gain to use { // sample the current RSSI level
// const int16_t max_gain_dB = gain_dB[original_index]; // average it with the previous rssi (a bit of noise/spike immunity)
const int16_t max_gain_dB = -10; const int16_t new_rssi = BK4819_GetRSSI();
rssi = (prev_rssi[vfo] > 0) ? (prev_rssi[vfo] + new_rssi) / 2 : new_rssi;
prev_rssi[vfo] = new_rssi;
}
max_index = ARRAY_SIZE(gain_table); #ifdef ENABLE_AM_FIX_SHOW_DATA
while (--max_index > 1) {
// if (gain_dB[max_index] <= max_gain_dB) int16_t new_rssi = rssi - rssi_gain_diff[vfo];
if (gain_table[max_index].gain_dB <= max_gain_dB) if (gCurrentRSSI[vfo] != new_rssi) { // rssi changed
gCurrentRSSI[vfo] = new_rssi;
if (counter == 0) {
counter = 1;
gUpdateDisplay = true; // trigger a display update
}
}
}
#endif
// automatically adjust the RF RX gain
// update the gain hold counter
if (hold_counter[vfo] > 0)
hold_counter[vfo]--;
// dB difference between actual and desired RSSI level
int16_t diff_dB = (rssi - desired_rssi) / 2;
if (diff_dB > 0) { // decrease gain
unsigned int index = gain_table_index[vfo]; // current position we're at
if (diff_dB >= 10) { // jump immediately to a new gain setting
// this greatly speeds up initial gain reduction (but reduces noise/spike immunity)
const int16_t desired_gain_dB = (int16_t)gain_table[index].gain_dB - diff_dB + 8; // get no closer than 8dB (bit of noise/spike immunity)
// scan the table to see what index to jump straight too
while (index > 1)
if (gain_table[--index].gain_dB <= desired_gain_dB)
break; break;
} }
#else else
// use the full range of available gains { // incrementally reduce the gain .. taking it slow improves noise/spike immunity
max_index = ARRAY_SIZE(gain_table) - 1; if (index > 1)
#endif index--; // slow step-by-step gain reduction
}
index = (index < 1) ? 1 : (index > max_index) ? max_index : index;
if (gain_table_index[vfo] != index)
{
gain_table_index[vfo] = index;
hold_counter[vfo] = 30; // 300ms hold
}
} }
void AM_fix_reset(const int vfo) if (diff_dB >= -6) // 6dB hysterisis (help reduce gain hunting)
{ // reset the AM fixer upper hold_counter[vfo] = 30; // 300ms hold
#ifdef ENABLE_AM_FIX_SHOW_DATA if (hold_counter[vfo] == 0)
counter = 0; { // hold has been released, we're free to increase gain
#endif const unsigned int index = gain_table_index[vfo] + 1; // move up to next gain index
gain_table_index[vfo] = (index <= max_index) ? index : max_index; // limit the gain index
prev_rssi[vfo] = 0;
hold_counter[vfo] = 0;
rssi_gain_diff[vfo] = 0;
#ifdef ENABLE_AM_FIX_TEST1
// gain_table_index[vfo] = 1 + gSetting_AM_fix_test1;
#else
// gain_table_index[vfo] = original_index; // re-start with original QS setting
#endif
gain_table_index_prev[vfo] = 0;
} }
// adjust the RX gain to try and prevent the AM demodulator from
// saturating/overloading/clipping (distorted AM audio)
//
// we're actually doing the BK4819's job for it here, but as the chip
// won't/don't do it for itself, we're left to bodging it ourself by
// playing with the RF front end gain setting
//
void AM_fix_10ms(const int vfo)
{
int16_t diff_dB;
int16_t rssi;
switch (gCurrentFunction) { // apply the new settings to the front end registers
{ const unsigned int index = gain_table_index[vfo];
case FUNCTION_TRANSMIT:
case FUNCTION_BAND_SCOPE:
case FUNCTION_POWER_SAVE:
#ifdef ENABLE_AM_FIX_SHOW_DATA
counter = display_update_rate; // queue up a display update as soon as we switch to RX mode
#endif
return;
// only adjust stuff if we're in one of these modes // remember the new table index
case FUNCTION_FOREGROUND: gain_table_index_prev[vfo] = index;
case FUNCTION_RECEIVE:
case FUNCTION_MONITOR:
case FUNCTION_INCOMING:
break;
}
#ifdef ENABLE_AM_FIX_SHOW_DATA BK4819_WriteRegister(BK4819_REG_13, gain_table[index].reg_val);
if (counter > 0)
{
if (++counter >= display_update_rate)
{ // trigger a display update
counter = 0;
gUpdateDisplay = true;
}
}
#endif
{ // sample the current RSSI level // offset the RSSI reading to the rest of the firmware to cancel out the gain adjustments we make
// average it with the previous rssi (a bit of noise/spike immunity)
const int16_t new_rssi = BK4819_GetRSSI();
rssi = (prev_rssi[vfo] > 0) ? (prev_rssi[vfo] + new_rssi) / 2 : new_rssi;
prev_rssi[vfo] = new_rssi;
}
// save the corrected RSSI level // RF gain difference from original QS setting
#ifdef ENABLE_AM_FIX_SHOW_DATA rssi_gain_diff[vfo] = ((int16_t)gain_table[index].gain_dB - gain_table[original_index].gain_dB) * 2;
{ }
const int16_t new_rssi = rssi - rssi_gain_diff[vfo];
if (gCurrentRSSI[vfo] != new_rssi)
{
gCurrentRSSI[vfo] = new_rssi;
if (counter == 0)
{ // trigger a display update
counter = 1;
gUpdateDisplay = true;
}
}
}
#else
gCurrentRSSI[vfo] = rssi - rssi_gain_diff[vfo];
#endif
#ifdef ENABLE_AM_FIX_TEST1 // save the corrected RSSI level
// user is manually adjusting a gain register - don't do anything automatically gCurrentRSSI[vfo] = rssi - rssi_gain_diff[vfo];
{ #ifdef ENABLE_AM_FIX_SHOW_DATA
int i = 1 + (int)gSetting_AM_fix_test1; if (counter == 0) {
i = (i < 1) ? 1 : (i > ((int)ARRAY_SIZE(gain_table) - 1) ? ARRAY_SIZE(gain_table) - 1 : i; counter = 1;
gUpdateDisplay = true;
if (gain_table_index[vfo] == i) }
return; // no change #endif
}
gain_table_index[vfo] = i;
}
#else
// automatically adjust the RF RX gain
// update the gain hold counter
if (hold_counter[vfo] > 0)
hold_counter[vfo]--;
// dB difference between actual and desired RSSI level
diff_dB = (rssi - desired_rssi) / 2;
if (diff_dB > 0)
{ // decrease gain
unsigned int index = gain_table_index[vfo]; // current position we're at
if (diff_dB >= 10)
{ // jump immediately to a new gain setting
// this greatly speeds up initial gain reduction (but reduces noise/spike immunity)
const int16_t desired_gain_dB = (int16_t)gain_table[index].gain_dB - diff_dB + 8; // get no closer than 8dB (bit of noise/spike immunity)
// scan the table to see what index to jump straight too
while (index > 1)
if (gain_table[--index].gain_dB <= desired_gain_dB)
break;
//index = (gain_table_index[vfo] + index) / 2; // easy does it
}
else
{ // incrementally reduce the gain .. taking it slow improves noise/spike immunity
// if (index >= (1 + 3) && diff_dB >= 3)
// index -= 3; // faster gain reduction
// else
if (index > 1)
index--; // slow step-by-step gain reduction
}
index = (index < 1) ? 1 : (index > max_index) ? max_index : index;
if (gain_table_index[vfo] != index)
{
gain_table_index[vfo] = index;
hold_counter[vfo] = 30; // 300ms hold
}
}
if (diff_dB >= -6) // 6dB hysterisis (help reduce gain hunting)
hold_counter[vfo] = 30; // 300ms hold
if (hold_counter[vfo] == 0)
{ // hold has been released, we're free to increase gain
const unsigned int index = gain_table_index[vfo] + 1; // move up to next gain index
gain_table_index[vfo] = (index <= max_index) ? index : max_index; // limit the gain index
}
#if 0
if (gain_table_index[vfo] == gain_table_index_prev[vfo])
return; // no gain change - this is to reduce writing to the BK chip on ever call
#endif
#ifdef ENABLE_AM_FIX_SHOW_DATA
void AM_fix_print_data(const unsigned vfo, char *s) {
if (s != NULL && vfo < ARRAY_SIZE(gain_table_index)) {
const unsigned int index = gain_table_index[vfo];
sprintf(s, "%2u %4ddB %3u", index, gain_table[index].gain_dB, prev_rssi[vfo]);
counter = 0;
}
}
#endif #endif
{ // apply the new settings to the front end registers int16_t AM_fix_get_rssi_gain_diff(const unsigned vfo)
{
if(vfo > 1)
return 0;
return rssi_gain_diff[vfo];
}
const unsigned int index = gain_table_index[vfo]; #endif
// remember the new table index
gain_table_index_prev[vfo] = index;
BK4819_WriteRegister(BK4819_REG_13, gain_table[index].reg_val);
// offset the RSSI reading to the rest of the firmware to cancel out the gain adjustments we make
// RF gain difference from original QS setting
rssi_gain_diff[vfo] = ((int16_t)gain_table[index].gain_dB - gain_table[original_index].gain_dB) * 2;
}
// save the corrected RSSI level
gCurrentRSSI[vfo] = rssi - rssi_gain_diff[vfo];
#ifdef ENABLE_AM_FIX_SHOW_DATA
if (counter == 0)
{
counter = 1;
gUpdateDisplay = true;
}
#endif
}
#ifdef ENABLE_AM_FIX_SHOW_DATA
void AM_fix_print_data(const int vfo, char *s)
{
if (s != NULL && vfo >= 0 && vfo < (int)ARRAY_SIZE(gain_table_index))
{
const unsigned int index = gain_table_index[vfo];
// sprintf(s, "%2u.%u %4ddB %3u", index, ARRAY_SIZE(gain_table) - 1, gain_table[index].gain_dB, prev_rssi[vfo]);
sprintf(s, "%2u %4ddB %3u", index, gain_table[index].gain_dB, prev_rssi[vfo]);
counter = 0;
}
}
#endif
#endif

View file

@ -21,15 +21,13 @@
#include <stdbool.h> #include <stdbool.h>
#ifdef ENABLE_AM_FIX #ifdef ENABLE_AM_FIX
extern int16_t rssi_gain_diff[2]; void AM_fix_init(void);
void AM_fix_10ms(const unsigned vfo, bool force);
void AM_fix_init(void);
void AM_fix_reset(const int vfo);
void AM_fix_10ms(const int vfo);
#ifdef ENABLE_AM_FIX_SHOW_DATA #ifdef ENABLE_AM_FIX_SHOW_DATA
void AM_fix_print_data(const int vfo, char *s); void AM_fix_print_data(const unsigned vfo, char *s);
#endif #endif
int16_t AM_fix_get_rssi_gain_diff(const unsigned vfo);
#endif
#endif #endif
#endif

View file

@ -81,8 +81,8 @@ void ACTION_Monitor(void)
gNoaaChannel = gRxVfo->CHANNEL_SAVE - NOAA_CHANNEL_FIRST; gNoaaChannel = gRxVfo->CHANNEL_SAVE - NOAA_CHANNEL_FIRST;
#endif #endif
RADIO_SetupRegisters(true); RADIO_SetupRegisters(true);
APP_StartListening(FUNCTION_MONITOR, false); APP_StartListening(FUNCTION_MONITOR);
return; return;
} }
gMonitor = false; gMonitor = false;

View file

@ -74,7 +74,7 @@ static void UpdateRSSI(const int vfo)
#ifdef ENABLE_AM_FIX #ifdef ENABLE_AM_FIX
// add RF gain adjust compensation // add RF gain adjust compensation
if (gEeprom.VfoInfo[vfo].Modulation == MODULATION_AM && gSetting_AM_fix) if (gEeprom.VfoInfo[vfo].Modulation == MODULATION_AM && gSetting_AM_fix)
rssi -= rssi_gain_diff[vfo]; rssi -= AM_fix_get_rssi_gain_diff(vfo);
#endif #endif
if (gCurrentRSSI[vfo] == rssi) if (gCurrentRSSI[vfo] == rssi)
@ -172,7 +172,7 @@ static void CheckForIncoming(void)
static void HandleIncoming(void) static void HandleIncoming(void)
{ {
bool bFlag;
if (!g_SquelchLost) { // squelch is closed if (!g_SquelchLost) { // squelch is closed
#ifdef ENABLE_DTMF_CALLING #ifdef ENABLE_DTMF_CALLING
@ -186,8 +186,7 @@ static void HandleIncoming(void)
return; return;
} }
bFlag = (gScanStateDir == SCAN_OFF && gCurrentCodeType == CODE_TYPE_OFF); bool bFlag = (gScanStateDir == SCAN_OFF && gCurrentCodeType == CODE_TYPE_OFF);
#ifdef ENABLE_NOAA #ifdef ENABLE_NOAA
if (IS_NOAA_CHANNEL(gRxVfo->CHANNEL_SAVE) && gNOAACountdown_10ms > 0) { if (IS_NOAA_CHANNEL(gRxVfo->CHANNEL_SAVE) && gNOAACountdown_10ms > 0) {
gNOAACountdown_10ms = 0; gNOAACountdown_10ms = 0;
@ -200,8 +199,9 @@ static void HandleIncoming(void)
gFoundCTCSS = false; gFoundCTCSS = false;
} }
if (g_CDCSS_Lost && gCDCSSCodeType == CDCSS_POSITIVE_CODE && (gCurrentCodeType == CODE_TYPE_DIGITAL || gCurrentCodeType == CODE_TYPE_REVERSE_DIGITAL)) { if (g_CDCSS_Lost && gCDCSSCodeType == CDCSS_POSITIVE_CODE
gFoundCDCSS = false; && (gCurrentCodeType == CODE_TYPE_DIGITAL || gCurrentCodeType == CODE_TYPE_REVERSE_DIGITAL))
{ gFoundCDCSS = false;
} }
else if (!bFlag) else if (!bFlag)
return; return;
@ -231,7 +231,7 @@ static void HandleIncoming(void)
} }
#endif #endif
APP_StartListening(gMonitor ? FUNCTION_MONITOR : FUNCTION_RECEIVE, false); APP_StartListening(gMonitor ? FUNCTION_MONITOR : FUNCTION_RECEIVE);
} }
static void HandleReceive(void) static void HandleReceive(void)
@ -445,11 +445,9 @@ static void HandleFunction(void)
} }
} }
void APP_StartListening(FUNCTION_Type_t Function, const bool reset_am_fix) void APP_StartListening(FUNCTION_Type_t function){
{ const unsigned int vfo = gEeprom.RX_VFO;
(void)reset_am_fix; // const unsigned int chan = gRxVfo->CHANNEL_SAVE;
const unsigned int chan = gEeprom.RX_VFO;
// const unsigned int chan = gRxVfo->CHANNEL_SAVE;
#ifdef ENABLE_DTMF_CALLING #ifdef ENABLE_DTMF_CALLING
if (gSetting_KILLED) if (gSetting_KILLED)
@ -462,8 +460,7 @@ void APP_StartListening(FUNCTION_Type_t Function, const bool reset_am_fix)
#endif #endif
// clear the other vfo's rssi level (to hide the antenna symbol) // clear the other vfo's rssi level (to hide the antenna symbol)
gVFO_RSSI_bar_level[(chan + 1) & 1u] = 0; gVFO_RSSI_bar_level[!vfo] = 0;
AUDIO_AudioPathOn(); AUDIO_AudioPathOn();
gEnableSpeaker = true; gEnableSpeaker = true;
@ -477,8 +474,7 @@ void APP_StartListening(FUNCTION_Type_t Function, const bool reset_am_fix)
gRxVfo->CHANNEL_SAVE = gNoaaChannel + NOAA_CHANNEL_FIRST; gRxVfo->CHANNEL_SAVE = gNoaaChannel + NOAA_CHANNEL_FIRST;
gRxVfo->pRX->Frequency = NoaaFrequencyTable[gNoaaChannel]; gRxVfo->pRX->Frequency = NoaaFrequencyTable[gNoaaChannel];
gRxVfo->pTX->Frequency = NoaaFrequencyTable[gNoaaChannel]; gRxVfo->pTX->Frequency = NoaaFrequencyTable[gNoaaChannel];
gEeprom.ScreenChannel[chan] = gRxVfo->CHANNEL_SAVE; gEeprom.ScreenChannel[vfo] = gRxVfo->CHANNEL_SAVE;
gNOAA_Countdown_10ms = 500; // 5 sec gNOAA_Countdown_10ms = 500; // 5 sec
gScheduleNOAA = false; gScheduleNOAA = false;
} }
@ -500,38 +496,25 @@ void APP_StartListening(FUNCTION_Type_t Function, const bool reset_am_fix)
gUpdateStatus = true; gUpdateStatus = true;
} }
#ifdef ENABLE_AM_FIX
if (gRxVfo->Modulation == MODULATION_AM && gSetting_AM_fix) { // AM RX mode
if (reset_am_fix)
AM_fix_reset(chan); // TODO: only reset it when moving channel/frequency
AM_fix_10ms(chan);
}
#endif
// AF gain - original QS values
// if (gRxVfo->Modulation != MODULATION_FM){
// BK4819_WriteRegister(BK4819_REG_48, 0xB3A8);
// }
// else
{
BK4819_WriteRegister(BK4819_REG_48, BK4819_WriteRegister(BK4819_REG_48,
(11u << 12) | // ??? .. 0 to 15, doesn't seem to make any difference (11u << 12) | // ??? .. 0 to 15, doesn't seem to make any difference
( 0u << 10) | // AF Rx Gain-1 ( 0u << 10) | // AF Rx Gain-1
(gEeprom.VOLUME_GAIN << 4) | // AF Rx Gain-2 (gEeprom.VOLUME_GAIN << 4) | // AF Rx Gain-2
(gEeprom.DAC_GAIN << 0)); // AF DAC Gain (after Gain-1 and Gain-2) (gEeprom.DAC_GAIN << 0)); // AF DAC Gain (after Gain-1 and Gain-2)
}
#ifdef ENABLE_VOICE #ifdef ENABLE_VOICE
if (gVoiceWriteIndex == 0) // AM/FM RX mode will be set when the voice has finished if (gVoiceWriteIndex == 0) // AM/FM RX mode will be set when the voice has finished
#endif #endif
RADIO_SetModulation(gRxVfo->Modulation); // no need, set it now RADIO_SetModulation(gRxVfo->Modulation); // no need, set it now
FUNCTION_Select(Function); FUNCTION_Select(function);
#ifdef ENABLE_FMRADIO #ifdef ENABLE_FMRADIO
if (Function == FUNCTION_MONITOR || gFmRadioMode) if (function == FUNCTION_MONITOR || gFmRadioMode)
#else #else
if (Function == FUNCTION_MONITOR) if (function == FUNCTION_MONITOR)
#endif #endif
{ // squelch is disabled { // squelch is disabled
if (gScreenToDisplay != DISPLAY_MENU) // 1of11 .. don't close the menu if (gScreenToDisplay != DISPLAY_MENU) // 1of11 .. don't close the menu
@ -1180,7 +1163,7 @@ void APP_TimeSlice10ms(void)
#ifdef ENABLE_AM_FIX #ifdef ENABLE_AM_FIX
if (gRxVfo->Modulation == MODULATION_AM && gSetting_AM_fix) if (gRxVfo->Modulation == MODULATION_AM && gSetting_AM_fix)
AM_fix_10ms(gEeprom.RX_VFO); AM_fix_10ms(gEeprom.RX_VFO, false);
#endif #endif
if (UART_IsCommandAvailable()) if (UART_IsCommandAvailable())
@ -1581,7 +1564,7 @@ void APP_TimeSlice500ms(void)
BATTERY_TimeSlice500ms(); BATTERY_TimeSlice500ms();
SCANNER_TimeSlice500ms(); SCANNER_TimeSlice500ms();
UI_MAIN_TimeSlice500ms();
#ifdef ENABLE_DTMF_CALLING #ifdef ENABLE_DTMF_CALLING
if (gCurrentFunction != FUNCTION_TRANSMIT) if (gCurrentFunction != FUNCTION_TRANSMIT)
{ {

View file

@ -24,7 +24,7 @@
#include "radio.h" #include "radio.h"
void APP_EndTransmission(void); void APP_EndTransmission(void);
void APP_StartListening(FUNCTION_Type_t Function, const bool reset_am_fix); void APP_StartListening(FUNCTION_Type_t function);
uint32_t APP_SetFreqByStepAndLimits(VFO_Info_t *pInfo, int8_t direction, uint32_t lower, uint32_t upper); uint32_t APP_SetFreqByStepAndLimits(VFO_Info_t *pInfo, int8_t direction, uint32_t lower, uint32_t upper);
uint32_t APP_SetFrequencyByStep(VFO_Info_t *pInfo, int8_t direction); uint32_t APP_SetFrequencyByStep(VFO_Info_t *pInfo, int8_t direction);
void APP_Update(void); void APP_Update(void);

View file

@ -71,14 +71,14 @@ void CHFRSCANNER_ContinueScanning(void)
if (IS_FREQ_CHANNEL(gNextMrChannel)) if (IS_FREQ_CHANNEL(gNextMrChannel))
{ {
if (gCurrentFunction == FUNCTION_INCOMING) if (gCurrentFunction == FUNCTION_INCOMING)
APP_StartListening(gMonitor ? FUNCTION_MONITOR : FUNCTION_RECEIVE, true); APP_StartListening(gMonitor ? FUNCTION_MONITOR : FUNCTION_RECEIVE);
else else
NextFreqChannel(); // switch to next frequency NextFreqChannel(); // switch to next frequency
} }
else else
{ {
if (gCurrentCodeType == CODE_TYPE_OFF && gCurrentFunction == FUNCTION_INCOMING) if (gCurrentCodeType == CODE_TYPE_OFF && gCurrentFunction == FUNCTION_INCOMING)
APP_StartListening(gMonitor ? FUNCTION_MONITOR : FUNCTION_RECEIVE, true); APP_StartListening(gMonitor ? FUNCTION_MONITOR : FUNCTION_RECEIVE);
else else
NextMemChannel(); // switch to next channel NextMemChannel(); // switch to next channel
} }

View file

@ -46,24 +46,19 @@
#include <stdlib.h> #include <stdlib.h>
void toggle_chan_scanlist(void) { // toggle the selected channels scanlist setting void toggle_chan_scanlist(void) { // toggle the selected channels scanlist setting
if ( SCANNER_IsScanning()) if (SCANNER_IsScanning())
return; return;
if(!IS_MR_CHANNEL(gTxVfo->CHANNEL_SAVE)) { if (!IS_MR_CHANNEL(gTxVfo->CHANNEL_SAVE)) {
#ifdef ENABLE_SCAN_RANGES #ifdef ENABLE_SCAN_RANGES
gScanRangeStart = gScanRangeStart ? 0 : gTxVfo->pRX->Frequency; gScanRangeStart = gScanRangeStart ? 0 : gTxVfo->pRX->Frequency;
#endif #endif
return; return;
} }
if (gTxVfo->SCANLIST1_PARTICIPATION) {
if (gTxVfo->SCANLIST2_PARTICIPATION) if (gTxVfo->SCANLIST1_PARTICIPATION ^ gTxVfo->SCANLIST2_PARTICIPATION) {
gTxVfo->SCANLIST1_PARTICIPATION = 0; gTxVfo->SCANLIST2_PARTICIPATION = gTxVfo->SCANLIST1_PARTICIPATION;
else
gTxVfo->SCANLIST2_PARTICIPATION = 1;
} else { } else {
if (gTxVfo->SCANLIST2_PARTICIPATION) gTxVfo->SCANLIST1_PARTICIPATION = !gTxVfo->SCANLIST1_PARTICIPATION;
gTxVfo->SCANLIST2_PARTICIPATION = 0;
else
gTxVfo->SCANLIST1_PARTICIPATION = 1;
} }
SETTINGS_UpdateChannel(gTxVfo->CHANNEL_SAVE, gTxVfo, true); SETTINGS_UpdateChannel(gTxVfo->CHANNEL_SAVE, gTxVfo, true);
@ -73,7 +68,6 @@ void toggle_chan_scanlist(void) { // toggle the selected channels scanlist se
} }
static void processFKeyFunction(const KEY_Code_t Key, const bool beep) { static void processFKeyFunction(const KEY_Code_t Key, const bool beep) {
uint8_t Band;
uint8_t Vfo = gEeprom.TX_VFO; uint8_t Vfo = gEeprom.TX_VFO;
if (gScreenToDisplay == DISPLAY_MENU) { if (gScreenToDisplay == DISPLAY_MENU) {
@ -81,8 +75,6 @@ static void processFKeyFunction(const KEY_Code_t Key, const bool beep) {
gBeepToPlay = BEEP_500HZ_60MS_DOUBLE_BEEP_OPTIONAL; gBeepToPlay = BEEP_500HZ_60MS_DOUBLE_BEEP_OPTIONAL;
return; return;
} }
// if (beep)
gBeepToPlay = BEEP_1KHZ_60MS_OPTIONAL; gBeepToPlay = BEEP_1KHZ_60MS_OPTIONAL;
switch (Key) { switch (Key) {
@ -106,63 +98,59 @@ static void processFKeyFunction(const KEY_Code_t Key, const bool beep) {
gBeepToPlay = BEEP_1KHZ_60MS_OPTIONAL; gBeepToPlay = BEEP_1KHZ_60MS_OPTIONAL;
#ifdef ENABLE_COPY_CHAN_TO_VFO #ifdef ENABLE_COPY_CHAN_TO_VFO
if (gEeprom.VFO_OPEN && !gCssBackgroundScan) if (!gEeprom.VFO_OPEN || gCssBackgroundScan)
{ {
gBeepToPlay = BEEP_500HZ_60MS_DOUBLE_BEEP_OPTIONAL;
if (gScanStateDir != SCAN_OFF) return;
{
if (gCurrentFunction != FUNCTION_INCOMING ||
gRxReceptionMode == RX_MODE_NONE ||
gScanPauseDelayIn_10ms == 0)
{ // scan is running (not paused)
return;
}
}
const uint8_t vfo = gEeprom.TX_VFO;
if (IS_MR_CHANNEL(gEeprom.ScreenChannel[vfo]))
{ // copy channel to VFO, then swap to the VFO
const unsigned int channel = FREQ_CHANNEL_FIRST + gEeprom.VfoInfo[vfo].Band;
gEeprom.ScreenChannel[vfo] = channel;
gEeprom.VfoInfo[vfo].CHANNEL_SAVE = channel;
RADIO_SelectVfos();
RADIO_ApplyOffset(gRxVfo);
RADIO_ConfigureSquelchAndOutputPower(gRxVfo);
RADIO_SetupRegisters(true);
//SETTINGS_SaveChannel(channel, gEeprom.RX_VFO, gRxVfo, 1);
gUpdateDisplay = true;
}
} }
else if (gScanStateDir != SCAN_OFF)
{ {
gBeepToPlay = BEEP_500HZ_60MS_DOUBLE_BEEP_OPTIONAL; if (gCurrentFunction != FUNCTION_INCOMING ||
gRxReceptionMode == RX_MODE_NONE ||
gScanPauseDelayIn_10ms == 0)
{ // scan is running (not paused)
return;
}
}
const uint8_t vfo = gEeprom.TX_VFO;
if (IS_MR_CHANNEL(gEeprom.ScreenChannel[vfo]))
{ // copy channel to VFO, then swap to the VFO
gEeprom.ScreenChannel[vfo] = FREQ_CHANNEL_FIRST + gEeprom.VfoInfo[vfo].Band;
gEeprom.VfoInfo[vfo].CHANNEL_SAVE = gEeprom.ScreenChannel[vfo];
RADIO_SelectVfos();
RADIO_ApplyOffset(gRxVfo);
RADIO_ConfigureSquelchAndOutputPower(gRxVfo);
RADIO_SetupRegisters(true);
//SETTINGS_SaveChannel(channel, gEeprom.RX_VFO, gRxVfo, 1);
gUpdateDisplay = true;
} }
#endif #endif
return; return;
} }
if (gTxVfo->Band == 6 && gTxVfo->pRX->Frequency < 100000000) { #ifdef ENABLE_WIDE_RX
gTxVfo->pRX->Frequency = 100000000; if(gTxVfo->Band == BAND7_470MHz && gTxVfo->pRX->Frequency < _1GHz_in_KHz) {
return; gTxVfo->pRX->Frequency = _1GHz_in_KHz;
} else { return;
Band = gTxVfo->Band + 1;
// if (gSetting_350EN || Band != BAND5_350MHz) {
if (Band > BAND7_470MHz)
Band = BAND1_50MHz;
// } else
// Band = BAND6_400MHz;
gTxVfo->Band = Band;
gEeprom.ScreenChannel[Vfo] = FREQ_CHANNEL_FIRST + Band;
gEeprom.FreqChannel[Vfo] = FREQ_CHANNEL_FIRST + Band;
} }
#endif
gTxVfo->Band += 1;
if (gTxVfo->Band == BAND5_350MHz && gSetting_F_LOCK != F_LOCK_NONE) {
// skip if not enabled
gTxVfo->Band += 1;
} else if (gTxVfo->Band >= BAND_LAST_ELEMENT) {
// go arround if overflowed
gTxVfo->Band = BAND1_50MHz;
}
gEeprom.ScreenChannel[Vfo] = FREQ_CHANNEL_FIRST + gTxVfo->Band;
gEeprom.FreqChannel[Vfo] = FREQ_CHANNEL_FIRST + gTxVfo->Band;
gRequestSaveVFO = true; gRequestSaveVFO = true;
gVfoConfigureMode = VFO_CONFIGURE_RELOAD; gVfoConfigureMode = VFO_CONFIGURE_RELOAD;
@ -315,8 +303,6 @@ static void MAIN_Key_DIGITS(KEY_Code_t Key, bool bKeyPressed, bool bKeyHeld) {
if (IS_MR_CHANNEL(gTxVfo->CHANNEL_SAVE)) { // user is entering channel number if (IS_MR_CHANNEL(gTxVfo->CHANNEL_SAVE)) { // user is entering channel number
uint16_t Channel;
if (gInputBoxIndex != 3) { if (gInputBoxIndex != 3) {
#ifdef ENABLE_VOICE #ifdef ENABLE_VOICE
gAnotherVoiceID = (VOICE_ID_t)Key; gAnotherVoiceID = (VOICE_ID_t)Key;
@ -327,7 +313,7 @@ static void MAIN_Key_DIGITS(KEY_Code_t Key, bool bKeyPressed, bool bKeyHeld) {
gInputBoxIndex = 0; gInputBoxIndex = 0;
Channel = ((gInputBox[0] * 100) + (gInputBox[1] * 10) + gInputBox[2]) - 1; const uint16_t Channel = ((gInputBox[0] * 100) + (gInputBox[1] * 10) + gInputBox[2]) - 1;
if (!RADIO_CheckValidChannel(Channel, false, 0)) { if (!RADIO_CheckValidChannel(Channel, false, 0)) {
gBeepToPlay = BEEP_500HZ_60MS_DOUBLE_BEEP_OPTIONAL; gBeepToPlay = BEEP_500HZ_60MS_DOUBLE_BEEP_OPTIONAL;
@ -351,18 +337,16 @@ static void MAIN_Key_DIGITS(KEY_Code_t Key, bool bKeyPressed, bool bKeyHeld) {
// #endif // #endif
if (IS_FREQ_CHANNEL(gTxVfo->CHANNEL_SAVE)) { // user is entering a frequency if (IS_FREQ_CHANNEL(gTxVfo->CHANNEL_SAVE)) { // user is entering a frequency
uint32_t Frequency;
bool isGigaF = gTxVfo->pRX->Frequency >= 100000000;
if (gInputBoxIndex < 6 + isGigaF) {
#ifdef ENABLE_VOICE #ifdef ENABLE_VOICE
gAnotherVoiceID = (VOICE_ID_t)Key; gAnotherVoiceID = (VOICE_ID_t)Key;
#endif #endif
bool isGigaF = gTxVfo->pRX->Frequency >= _1GHz_in_KHz;
if (gInputBoxIndex < 6 + isGigaF) {
return; return;
} }
gInputBoxIndex = 0; gInputBoxIndex = 0;
Frequency = StrToUL(INPUTBOX_GetAscii()) * 100; uint32_t Frequency = StrToUL(INPUTBOX_GetAscii()) * 100;
// clamp the frequency entered to some valid value // clamp the frequency entered to some valid value
if (Frequency < frequencyBandTable[0].lower) { if (Frequency < frequencyBandTable[0].lower) {
@ -374,70 +358,61 @@ static void MAIN_Key_DIGITS(KEY_Code_t Key, bool bKeyPressed, bool bKeyHeld) {
Frequency = frequencyBandTable[ARRAY_SIZE(frequencyBandTable) - 1].upper; Frequency = frequencyBandTable[ARRAY_SIZE(frequencyBandTable) - 1].upper;
} }
{ const FREQUENCY_Band_t band = FREQUENCY_GetBand(Frequency);
const FREQUENCY_Band_t band = FREQUENCY_GetBand(Frequency);
#ifdef ENABLE_VOICE if (gTxVfo->Band != band) {
gAnotherVoiceID = (VOICE_ID_t)Key; gTxVfo->Band = band;
#endif gEeprom.ScreenChannel[Vfo] = band + FREQ_CHANNEL_FIRST;
gEeprom.FreqChannel[Vfo] = band + FREQ_CHANNEL_FIRST;
if (gTxVfo->Band != band) { SETTINGS_SaveVfoIndices();
gTxVfo->Band = band;
gEeprom.ScreenChannel[Vfo] = band + FREQ_CHANNEL_FIRST;
gEeprom.FreqChannel[Vfo] = band + FREQ_CHANNEL_FIRST;
SETTINGS_SaveVfoIndices(); RADIO_ConfigureChannel(Vfo, VFO_CONFIGURE_RELOAD);
RADIO_ConfigureChannel(Vfo, VFO_CONFIGURE_RELOAD);
}
Frequency = FREQUENCY_RoundToStep(Frequency, gTxVfo->StepFrequency);
if (Frequency >= BX4819_band1.upper &&
Frequency < BX4819_band2.lower) { // clamp the frequency to the limit
const uint32_t center = (BX4819_band1.upper + BX4819_band2.lower) / 2;
Frequency = (Frequency < center) ? BX4819_band1.upper - gTxVfo->StepFrequency : BX4819_band2.lower;
}
gTxVfo->freq_config_RX.Frequency = Frequency;
gRequestSaveChannel = 1;
return;
} }
Frequency = FREQUENCY_RoundToStep(Frequency, gTxVfo->StepFrequency);
if (Frequency >= BX4819_band1.upper &&
Frequency < BX4819_band2.lower) { // clamp the frequency to the limit
const uint32_t center = (BX4819_band1.upper + BX4819_band2.lower) / 2;
Frequency = (Frequency < center) ? BX4819_band1.upper - gTxVfo->StepFrequency : BX4819_band2.lower;
}
gTxVfo->freq_config_RX.Frequency = Frequency;
gRequestSaveChannel = 1;
return;
} }
#ifdef ENABLE_NOAA #ifdef ENABLE_NOAA
else else
if (IS_NOAA_CHANNEL(gTxVfo->CHANNEL_SAVE)) if (IS_NOAA_CHANNEL(gTxVfo->CHANNEL_SAVE))
{ // user is entering NOAA channel { // user is entering NOAA channel
if (gInputBoxIndex != 2)
uint8_t Channel; {
if (gInputBoxIndex != 2)
{
#ifdef ENABLE_VOICE #ifdef ENABLE_VOICE
gAnotherVoiceID = (VOICE_ID_t)Key; gAnotherVoiceID = (VOICE_ID_t)Key;
#endif #endif
gRequestDisplayScreen = DISPLAY_MAIN; gRequestDisplayScreen = DISPLAY_MAIN;
return; return;
} }
gInputBoxIndex = 0; gInputBoxIndex = 0;
Channel = (gInputBox[0] * 10) + gInputBox[1]; uint8_t Channel = (gInputBox[0] * 10) + gInputBox[1];
if (Channel >= 1 && Channel <= ARRAY_SIZE(NoaaFrequencyTable)) if (Channel >= 1 && Channel <= ARRAY_SIZE(NoaaFrequencyTable))
{ {
Channel += NOAA_CHANNEL_FIRST; Channel += NOAA_CHANNEL_FIRST;
#ifdef ENABLE_VOICE #ifdef ENABLE_VOICE
gAnotherVoiceID = (VOICE_ID_t)Key; gAnotherVoiceID = (VOICE_ID_t)Key;
#endif #endif
gEeprom.NoaaChannel[Vfo] = Channel; gEeprom.NoaaChannel[Vfo] = Channel;
gEeprom.ScreenChannel[Vfo] = Channel; gEeprom.ScreenChannel[Vfo] = Channel;
gRequestSaveVFO = true; gRequestSaveVFO = true;
gVfoConfigureMode = VFO_CONFIGURE_RELOAD; gVfoConfigureMode = VFO_CONFIGURE_RELOAD;
return; return;
}
} }
}
#endif #endif
gRequestDisplayScreen = DISPLAY_MAIN; gRequestDisplayScreen = DISPLAY_MAIN;
@ -540,15 +515,14 @@ static void MAIN_Key_MENU(const bool bKeyPressed, const bool bKeyHeld) {
} }
if (!bKeyPressed && !gDTMF_InputMode) { // menu key released if (!bKeyPressed && !gDTMF_InputMode) { // menu key released
if(gWasFKeyPressed) if (gWasFKeyPressed) {
{ gWasFKeyPressed = false;
gWasFKeyPressed=false; gEeprom.BEEP_CONTROL = !gEeprom.BEEP_CONTROL;
gEeprom.BEEP_CONTROL=!gEeprom.BEEP_CONTROL; gRequestSaveSettings = 1;
gRequestSaveSettings = 1;
return; return;
} }
const bool bFlag = (gInputBoxIndex == 0); const bool bFlag = !gInputBoxIndex;
gInputBoxIndex = 0; gInputBoxIndex = 0;
if (bFlag) { if (bFlag) {
@ -607,8 +581,7 @@ static void MAIN_Key_STAR(bool bKeyPressed, bool bKeyHeld) {
#ifdef ENABLE_SCAN_RANGES #ifdef ENABLE_SCAN_RANGES
&& gScanRangeStart == 0 && gScanRangeStart == 0
#endif #endif
) ) { // start entering a DTMF string
{ // start entering a DTMF string
gBeepToPlay = BEEP_1KHZ_60MS_OPTIONAL; gBeepToPlay = BEEP_1KHZ_60MS_OPTIONAL;
memmove(gDTMF_InputBox, gDTMF_String, MIN(sizeof(gDTMF_InputBox), sizeof(gDTMF_String) - 1)); memmove(gDTMF_InputBox, gDTMF_String, MIN(sizeof(gDTMF_InputBox), sizeof(gDTMF_String) - 1));
gDTMF_InputBox_Index = 0; gDTMF_InputBox_Index = 0;
@ -617,8 +590,7 @@ static void MAIN_Key_STAR(bool bKeyPressed, bool bKeyHeld) {
gKeyInputCountdown = key_input_timeout_500ms; gKeyInputCountdown = key_input_timeout_500ms;
gRequestDisplayScreen = DISPLAY_MAIN; gRequestDisplayScreen = DISPLAY_MAIN;
} } else
else
gBeepToPlay = BEEP_500HZ_60MS_DOUBLE_BEEP_OPTIONAL; gBeepToPlay = BEEP_500HZ_60MS_DOUBLE_BEEP_OPTIONAL;
} else { // with the F-key } else { // with the F-key
gWasFKeyPressed = false; gWasFKeyPressed = false;

View file

@ -15,10 +15,10 @@
*/ */
#include "app/spectrum.h" #include "app/spectrum.h"
#include "driver/backlight.h"
#include "audio.h"
#include "ui/helper.h"
#include "am_fix.h" #include "am_fix.h"
#include "audio.h"
#include "driver/backlight.h"
#include "ui/helper.h"
#include "ui/main.h" #include "ui/main.h"
struct FrequencyBandInfo { struct FrequencyBandInfo {
@ -32,7 +32,6 @@ struct FrequencyBandInfo {
const uint16_t RSSI_MAX_VALUE = 65535; const uint16_t RSSI_MAX_VALUE = 65535;
static uint16_t R30, R37, R3D, R43, R47, R48, R7E; static uint16_t R30, R37, R3D, R43, R47, R48, R7E;
static uint32_t initialFreq; static uint32_t initialFreq;
static char String[32]; static char String[32];
@ -45,6 +44,7 @@ bool redrawScreen = false;
bool newScanStart = true; bool newScanStart = true;
bool preventKeypress = true; bool preventKeypress = true;
bool audioState = true; bool audioState = true;
bool lockAGC = false;
State currentState = SPECTRUM, previousState = SPECTRUM; State currentState = SPECTRUM, previousState = SPECTRUM;
@ -56,17 +56,17 @@ const char *bwOptions[] = {" 25k", "12.5k", "6.25k"};
const uint8_t modulationTypeTuneSteps[] = {100, 50, 10}; const uint8_t modulationTypeTuneSteps[] = {100, 50, 10};
const uint8_t modTypeReg47Values[] = {1, 7, 5}; const uint8_t modTypeReg47Values[] = {1, 7, 5};
SpectrumSettings settings = {stepsCount: STEPS_64, SpectrumSettings settings = {.stepsCount = STEPS_64,
scanStepIndex: S_STEP_25_0kHz, .scanStepIndex = S_STEP_25_0kHz,
frequencyChangeStep: 80000, .frequencyChangeStep = 80000,
scanDelay: 3200, .scanDelay = 3200,
rssiTriggerLevel: 150, .rssiTriggerLevel = 150,
backlightState: true, .backlightState = true,
bw: BK4819_FILTER_BW_WIDE, .bw = BK4819_FILTER_BW_WIDE,
listenBw: BK4819_FILTER_BW_WIDE, .listenBw = BK4819_FILTER_BW_WIDE,
modulationType: false, .modulationType = false,
dbMin: -130, .dbMin = -130,
dbMax: -50}; .dbMax = -50};
uint32_t fMeasure = 0; uint32_t fMeasure = 0;
uint32_t currentFreq, tempFreq; uint32_t currentFreq, tempFreq;
@ -102,9 +102,8 @@ static uint8_t DBm2S(int dbm) {
return i; return i;
} }
static int Rssi2DBm(uint16_t rssi) static int Rssi2DBm(uint16_t rssi) {
{ return (rssi / 2) - 160 + dBmCorrTable[gRxVfo->Band];
return (rssi / 2) - 160 + dBmCorrTable[gRxVfo->Band];
} }
static uint16_t GetRegMenuValue(uint8_t st) { static uint16_t GetRegMenuValue(uint8_t st) {
@ -112,10 +111,20 @@ static uint16_t GetRegMenuValue(uint8_t st) {
return (BK4819_ReadRegister(s.num) >> s.offset) & s.mask; return (BK4819_ReadRegister(s.num) >> s.offset) & s.mask;
} }
void LockAGC()
{
if(!lockAGC)
BK4819_SetAGC(0);
lockAGC = true;
}
static void SetRegMenuValue(uint8_t st, bool add) { static void SetRegMenuValue(uint8_t st, bool add) {
uint16_t v = GetRegMenuValue(st); uint16_t v = GetRegMenuValue(st);
RegisterSpec s = registerSpecs[st]; RegisterSpec s = registerSpecs[st];
if(s.num == BK4819_REG_13)
LockAGC();
uint16_t reg = BK4819_ReadRegister(s.num); uint16_t reg = BK4819_ReadRegister(s.num);
if (add && v <= s.mask - s.inc) { if (add && v <= s.mask - s.inc) {
v += s.inc; v += s.inc;
@ -282,15 +291,12 @@ uint16_t GetRssi() {
while ((BK4819_ReadRegister(0x63) & 0b11111111) >= 255) { while ((BK4819_ReadRegister(0x63) & 0b11111111) >= 255) {
SYSTICK_DelayUs(100); SYSTICK_DelayUs(100);
} }
if(settings.modulationType == MODULATION_AM)
{
return BK4819_GetRSSI() - rssi_gain_diff[vfo]; //return the corrected RSSI to allow for AM_Fixs AGC action.
}
else
{
return BK4819_GetRSSI();
}
return BK4819_GetRSSI()
#ifdef ENABLE_AM_FIX
- ((settings.modulationType == MODULATION_AM) ? AM_fix_get_rssi_gain_diff(vfo) : 0)
#endif
;
} }
static void ToggleAudio(bool on) { static void ToggleAudio(bool on) {
@ -395,14 +401,14 @@ static void Measure() { rssiHistory[scanInfo.i] = scanInfo.rssi = GetRssi(); }
// Update things by keypress // Update things by keypress
static uint16_t dbm2rssi(int dBm) static uint16_t dbm2rssi(int dBm) {
{ return (dBm + 160 - dBmCorrTable[gRxVfo->Band]) * 2;
return (dBm + 160 - dBmCorrTable[gRxVfo->Band])*2;
} }
static void ClampRssiTriggerLevel() static void ClampRssiTriggerLevel() {
{ settings.rssiTriggerLevel =
settings.rssiTriggerLevel = clamp(settings.rssiTriggerLevel, dbm2rssi(settings.dbMin), dbm2rssi(settings.dbMax)); clamp(settings.rssiTriggerLevel, dbm2rssi(settings.dbMin),
dbm2rssi(settings.dbMax));
} }
static void UpdateRssiTriggerLevel(bool inc) { static void UpdateRssiTriggerLevel(bool inc) {
@ -489,6 +495,10 @@ static void ToggleModulation() {
settings.modulationType = MODULATION_FM; settings.modulationType = MODULATION_FM;
} }
RADIO_SetModulation(settings.modulationType); RADIO_SetModulation(settings.modulationType);
if(settings.modulationType != MODULATION_AM) {
BK4819_InitAGC();
BK4819_SetAGC(1);
}
RelaunchScan(); RelaunchScan();
redrawScreen = true; redrawScreen = true;
} }
@ -549,7 +559,7 @@ static void UpdateFreqInput(KEY_Code_t key) {
} }
if (key == KEY_EXIT) { if (key == KEY_EXIT) {
freqInputIndex--; freqInputIndex--;
if(freqInputDotIndex==freqInputIndex) if (freqInputDotIndex == freqInputIndex)
freqInputDotIndex = 0; freqInputDotIndex = 0;
} else { } else {
freqInputArr[freqInputIndex++] = key; freqInputArr[freqInputIndex++] = key;
@ -564,7 +574,7 @@ static void UpdateFreqInput(KEY_Code_t key) {
for (int i = 0; i < 10; ++i) { for (int i = 0; i < 10; ++i) {
if (i < freqInputIndex) { if (i < freqInputIndex) {
digitKey = freqInputArr[i]; digitKey = freqInputArr[i];
freqInputString[i] = digitKey <= KEY_9 ? '0' + digitKey-KEY_0 : '.'; freqInputString[i] = digitKey <= KEY_9 ? '0' + digitKey - KEY_0 : '.';
} else { } else {
freqInputString[i] = '-'; freqInputString[i] = '-';
} }
@ -572,14 +582,14 @@ static void UpdateFreqInput(KEY_Code_t key) {
uint32_t base = 100000; // 1MHz in BK units uint32_t base = 100000; // 1MHz in BK units
for (int i = dotIndex - 1; i >= 0; --i) { for (int i = dotIndex - 1; i >= 0; --i) {
tempFreq += (freqInputArr[i]-KEY_0) * base; tempFreq += (freqInputArr[i] - KEY_0) * base;
base *= 10; base *= 10;
} }
base = 10000; // 0.1MHz in BK units base = 10000; // 0.1MHz in BK units
if (dotIndex < freqInputIndex) { if (dotIndex < freqInputIndex) {
for (int i = dotIndex + 1; i < freqInputIndex; ++i) { for (int i = dotIndex + 1; i < freqInputIndex; ++i) {
tempFreq += (freqInputArr[i]-KEY_0) * base; tempFreq += (freqInputArr[i] - KEY_0) * base;
base /= 10; base /= 10;
} }
} }
@ -630,10 +640,11 @@ static void DrawStatus() {
#endif #endif
GUI_DisplaySmallest(String, 0, 1, true, true); GUI_DisplaySmallest(String, 0, 1, true, true);
BOARD_ADC_GetBatteryInfo(&gBatteryVoltages[gBatteryCheckCounter++ % 4], &gBatteryCurrent); BOARD_ADC_GetBatteryInfo(&gBatteryVoltages[gBatteryCheckCounter++ % 4],
&gBatteryCurrent);
uint16_t voltage = (gBatteryVoltages[0] + gBatteryVoltages[1] + gBatteryVoltages[2] + uint16_t voltage = (gBatteryVoltages[0] + gBatteryVoltages[1] +
gBatteryVoltages[3]) / gBatteryVoltages[2] + gBatteryVoltages[3]) /
4 * 760 / gBatteryCalibration[3]; 4 * 760 / gBatteryCalibration[3];
unsigned perc = BATTERY_VoltsToPercent(voltage); unsigned perc = BATTERY_VoltsToPercent(voltage);
@ -648,7 +659,7 @@ static void DrawStatus() {
} }
for (unsigned i = 127; i >= 118; i--) { for (unsigned i = 127; i >= 118; i--) {
if (127 - i <= (perc+5)*9/100) { if (127 - i <= (perc + 5) * 9 / 100) {
gStatusLine[i] = 0b00111110; gStatusLine[i] = 0b00111110;
} }
} }
@ -901,6 +912,7 @@ void OnKeyDownStill(KEY_Code_t key) {
case KEY_EXIT: case KEY_EXIT:
if (!menuState) { if (!menuState) {
SetState(SPECTRUM); SetState(SPECTRUM);
lockAGC = false;
monitorMode = false; monitorMode = false;
RelaunchScan(); RelaunchScan();
break; break;
@ -912,9 +924,7 @@ void OnKeyDownStill(KEY_Code_t key) {
} }
} }
static void RenderFreqInput() { static void RenderFreqInput() { UI_PrintStringSmall(freqInputString, 2, 127, 0); }
UI_PrintStringSmall(freqInputString, 2, 127, 0);
}
static void RenderStatus() { static void RenderStatus() {
memset(gStatusLine, 0, sizeof(gStatusLine)); memset(gStatusLine, 0, sizeof(gStatusLine));
@ -1014,13 +1024,12 @@ bool HandleUserInput() {
kbd.current = GetKey(); kbd.current = GetKey();
if (kbd.current != KEY_INVALID && kbd.current == kbd.prev) { if (kbd.current != KEY_INVALID && kbd.current == kbd.prev) {
if(kbd.counter < 16) if (kbd.counter < 16)
kbd.counter++; kbd.counter++;
else else
kbd.counter-=3; kbd.counter -= 3;
SYSTEM_DelayMs(20); SYSTEM_DelayMs(20);
} } else {
else {
kbd.counter = 0; kbd.counter = 0;
} }
@ -1119,11 +1128,12 @@ static void UpdateListening() {
} }
static void Tick() { static void Tick() {
#ifdef ENABLE_AM_FIX
if(settings.modulationType == MODULATION_AM) {
AM_fix_10ms(vfo, !lockAGC); //allow AM_Fix to apply its AGC action
}
#endif
if(settings.modulationType == MODULATION_AM)
{
AM_fix_10ms(vfo); //allow AM_Fix to apply its AGC action
}
if (!preventKeypress) { if (!preventKeypress) {
HandleUserInput(); HandleUserInput();
} }
@ -1153,9 +1163,10 @@ static void Tick() {
void APP_RunSpectrum() { void APP_RunSpectrum() {
// TX here coz it always? set to active VFO // TX here coz it always? set to active VFO
vfo = gEeprom.TX_VFO; vfo = gEeprom.TX_VFO;
//set the current frequency in the middle of the display // set the current frequency in the middle of the display
currentFreq = initialFreq = gEeprom.VfoInfo[vfo].pRX->Frequency - ((GetStepsCount()/2) * GetScanStep()); currentFreq = initialFreq = gEeprom.VfoInfo[vfo].pRX->Frequency -
((GetStepsCount() / 2) * GetScanStep());
BackupRegisters(); BackupRegisters();
@ -1166,6 +1177,14 @@ void APP_RunSpectrum() {
ToggleRX(true), ToggleRX(false); // hack to prevent noise when squelch off ToggleRX(true), ToggleRX(false); // hack to prevent noise when squelch off
RADIO_SetModulation(settings.modulationType = gRxVfo->Modulation); RADIO_SetModulation(settings.modulationType = gRxVfo->Modulation);
#ifdef ENABLE_AM_FIX
if(settings.modulationType != MODULATION_AM) {
BK4819_InitAGC();
BK4819_SetAGC(1);
}
#endif
BK4819_SetFilterBandwidth(settings.listenBw = BK4819_FILTER_BW_WIDE, false); BK4819_SetFilterBandwidth(settings.listenBw = BK4819_FILTER_BW_WIDE, false);
RelaunchScan(); RelaunchScan();

View file

@ -493,7 +493,7 @@ void BOARD_Init(void)
BOARD_GPIO_Init(); BOARD_GPIO_Init();
BACKLIGHT_InitHardware(); BACKLIGHT_InitHardware();
BOARD_ADC_Init(); BOARD_ADC_Init();
ST7565_Init(true); ST7565_Init();
#ifdef ENABLE_FMRADIO #ifdef ENABLE_FMRADIO
BK1080_Init(0, false); BK1080_Init(0, false);
#endif #endif

View file

@ -25,119 +25,58 @@
#include "driver/system.h" #include "driver/system.h"
#include "misc.h" #include "misc.h"
uint8_t gStatusLine[128]; uint8_t gStatusLine[LCD_WIDTH];
uint8_t gFrameBuffer[7][128]; uint8_t gFrameBuffer[FRAME_LINES][LCD_WIDTH];
void ST7565_DrawLine(const unsigned int Column, const unsigned int Line, const unsigned int Size, const uint8_t *pBitmap) static void DrawLine(uint8_t column, uint8_t line, const uint8_t * lineBuffer, unsigned size_defVal)
{ {
unsigned int i; ST7565_SelectColumnAndLine(column + 4, line);
GPIO_SetBit(&GPIOB->DATA, GPIOB_PIN_ST7565_A0);
for (unsigned i = 0; i < size_defVal; i++) {
while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {}
SPI0->WDR = lineBuffer ? lineBuffer[i] : size_defVal;
}
SPI_WaitForUndocumentedTxFifoStatusBit();
}
SPI_ToggleMasterMode(&SPI0->CR, false); void ST7565_DrawLine(const unsigned int Column, const unsigned int Line, const uint8_t *pBitmap, const unsigned int Size)
{
ST7565_SelectColumnAndLine(Column + 4U, Line); SPI_ToggleMasterMode(&SPI0->CR, false);
DrawLine(Column, Line, pBitmap, Size);
GPIO_SetBit(&GPIOB->DATA, GPIOB_PIN_ST7565_A0); SPI_ToggleMasterMode(&SPI0->CR, true);
if (pBitmap != NULL)
{
for (i = 0; i < Size; i++)
{
while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {}
SPI0->WDR = pBitmap[i];
}
}
else
{
for (i = 0; i < Size; i++)
{
while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {}
SPI0->WDR = 0;
}
}
SPI_WaitForUndocumentedTxFifoStatusBit();
SPI_ToggleMasterMode(&SPI0->CR, true);
} }
void ST7565_BlitFullScreen(void) void ST7565_BlitFullScreen(void)
{ {
unsigned int Line; SPI_ToggleMasterMode(&SPI0->CR, false);
ST7565_WriteByte(0x40);
SPI_ToggleMasterMode(&SPI0->CR, false); for (unsigned line = 0; line < FRAME_LINES; line++) {
DrawLine(0, line+1, gFrameBuffer[line], LCD_WIDTH);
ST7565_WriteByte(0x40); }
SPI_ToggleMasterMode(&SPI0->CR, true);
for (Line = 0; Line < ARRAY_SIZE(gFrameBuffer); Line++) }
{ void ST7565_BlitLine(unsigned line)
unsigned int Column; {
ST7565_SelectColumnAndLine(4, Line + 1); SPI_ToggleMasterMode(&SPI0->CR, false);
GPIO_SetBit(&GPIOB->DATA, GPIOB_PIN_ST7565_A0); ST7565_WriteByte(0x40); // start line ?
for (Column = 0; Column < ARRAY_SIZE(gFrameBuffer[0]); Column++) DrawLine(0, line+1, gFrameBuffer[line], LCD_WIDTH);
{ SPI_ToggleMasterMode(&SPI0->CR, true);
while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {}
SPI0->WDR = gFrameBuffer[Line][Column];
}
SPI_WaitForUndocumentedTxFifoStatusBit();
}
#if 0
// whats the delay for I wonder, it holds things up :(
SYSTEM_DelayMs(20);
#else
// SYSTEM_DelayMs(1);
#endif
SPI_ToggleMasterMode(&SPI0->CR, true);
} }
void ST7565_BlitStatusLine(void) void ST7565_BlitStatusLine(void)
{ // the top small text line on the display { // the top small text line on the display
SPI_ToggleMasterMode(&SPI0->CR, false);
unsigned int i; ST7565_WriteByte(0x40); // start line ?
DrawLine(0, 0, gStatusLine, LCD_WIDTH);
SPI_ToggleMasterMode(&SPI0->CR, false); SPI_ToggleMasterMode(&SPI0->CR, true);
ST7565_WriteByte(0x40); // start line ?
ST7565_SelectColumnAndLine(4, 0);
GPIO_SetBit(&GPIOB->DATA, GPIOB_PIN_ST7565_A0);
for (i = 0; i < ARRAY_SIZE(gStatusLine); i++)
{
while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {}
SPI0->WDR = gStatusLine[i];
}
SPI_WaitForUndocumentedTxFifoStatusBit();
SPI_ToggleMasterMode(&SPI0->CR, true);
} }
void ST7565_FillScreen(uint8_t Value) void ST7565_FillScreen(uint8_t value)
{ {
unsigned int i; SPI_ToggleMasterMode(&SPI0->CR, false);
for (unsigned i = 0; i < 8; i++) {
// reset some of the displays settings to try and overcome the radios hardware problem - RF corrupting the display DrawLine(0, i, NULL, value);
ST7565_Init(false); }
SPI_ToggleMasterMode(&SPI0->CR, true);
SPI_ToggleMasterMode(&SPI0->CR, false);
for (i = 0; i < 8; i++)
{
unsigned int j;
ST7565_SelectColumnAndLine(0, i);
GPIO_SetBit(&GPIOB->DATA, GPIOB_PIN_ST7565_A0);
for (j = 0; j < 132; j++)
{
while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {}
SPI0->WDR = Value;
}
SPI_WaitForUndocumentedTxFifoStatusBit();
}
SPI_ToggleMasterMode(&SPI0->CR, true);
} }
// Software reset // Software reset
@ -181,100 +120,93 @@ const uint8_t ST7565_CMD_SET_EV = 0x81;
// VF: Built-in Follower // VF: Built-in Follower
const uint8_t ST7565_CMD_POWER_CIRCUIT = 0x28; const uint8_t ST7565_CMD_POWER_CIRCUIT = 0x28;
// Set display start line 0-63 // Set display start line 0-63
// 0 0 0 1 S5 S4 S3 S2 S1 S0 // 0 0 0 1 S5 S4 S3 S2 S1 S0
const uint8_t ST7565_CMD_SET_START_LINE = 0x40; const uint8_t ST7565_CMD_SET_START_LINE = 0x40;
// Display ON/OFF // Display ON/OFF
// 0 0 1 0 1 0 1 1 1 D // 0 0 1 0 1 0 1 1 1 D
// D=1, display ON // D=1, display ON
// D=0, display OFF // D=0, display OFF
const uint8_t ST7565_CMD_DISPLAY_ON_OFF = 0xAE; const uint8_t ST7565_CMD_DISPLAY_ON_OFF = 0xAE;
uint8_t cmds[] = { uint8_t cmds[] = {
ST7565_CMD_BIAS_SELECT | 0, // Select bias setting: 1/9 ST7565_CMD_BIAS_SELECT | 0, // Select bias setting: 1/9
ST7565_CMD_COM_DIRECTION | (0 << 3), // Set output direction of COM: normal ST7565_CMD_COM_DIRECTION | (0 << 3), // Set output direction of COM: normal
ST7565_CMD_SEG_DIRECTION | 1, // Set scan direction of SEG: reverse ST7565_CMD_SEG_DIRECTION | 1, // Set scan direction of SEG: reverse
ST7565_CMD_INVERSE_DISPLAY | 0, // Inverse Display: false ST7565_CMD_INVERSE_DISPLAY | 0, // Inverse Display: false
ST7565_CMD_ALL_PIXEL_ON | 0, // All Pixel ON: false - normal display ST7565_CMD_ALL_PIXEL_ON | 0, // All Pixel ON: false - normal display
ST7565_CMD_REGULATION_RATIO | (4 << 0), // Regulation Ratio 5.0 ST7565_CMD_REGULATION_RATIO | (4 << 0), // Regulation Ratio 5.0
ST7565_CMD_SET_EV, // Set contrast ST7565_CMD_SET_EV, // Set contrast
31, 31,
ST7565_CMD_POWER_CIRCUIT | 0b111, // Built-in power circuit ON/OFF: VB=1 VR=1 VF=1 ST7565_CMD_POWER_CIRCUIT | 0b111, // Built-in power circuit ON/OFF: VB=1 VR=1 VF=1
ST7565_CMD_SET_START_LINE | 0, // Set Start Line: 0 ST7565_CMD_SET_START_LINE | 0, // Set Start Line: 0
ST7565_CMD_DISPLAY_ON_OFF | 1, // Display ON/OFF: ON ST7565_CMD_DISPLAY_ON_OFF | 1, // Display ON/OFF: ON
}; };
void ST7565_Init(const bool full) void ST7565_Init(void)
{ {
if (full) { SPI0_Init();
SPI0_Init(); ST7565_HardwareReset();
ST7565_HardwareReset(); SPI_ToggleMasterMode(&SPI0->CR, false);
SPI_ToggleMasterMode(&SPI0->CR, false); ST7565_WriteByte(ST7565_CMD_SOFTWARE_RESET); // software reset
ST7565_WriteByte(ST7565_CMD_SOFTWARE_RESET); // software reset SYSTEM_DelayMs(120);
SYSTEM_DelayMs(120);
}
else
SPI_ToggleMasterMode(&SPI0->CR, false);
for(uint8_t i = 0; i < 8; i++) for(uint8_t i = 0; i < 8; i++)
ST7565_WriteByte(cmds[i]); ST7565_WriteByte(cmds[i]);
if (full) { ST7565_WriteByte(ST7565_CMD_POWER_CIRCUIT | 0b011); // VB=0 VR=1 VF=1
ST7565_WriteByte(ST7565_CMD_POWER_CIRCUIT | 0b011); // VB=0 VR=1 VF=1 SYSTEM_DelayMs(1);
SYSTEM_DelayMs(1); ST7565_WriteByte(ST7565_CMD_POWER_CIRCUIT | 0b110); // VB=1 VR=1 VF=0
ST7565_WriteByte(ST7565_CMD_POWER_CIRCUIT | 0b110); // VB=1 VR=1 VF=0 SYSTEM_DelayMs(1);
SYSTEM_DelayMs(1);
for(uint8_t i = 0; i < 4; i++) // why 4 times?
ST7565_WriteByte(ST7565_CMD_POWER_CIRCUIT | 0b111); // VB=1 VR=1 VF=1
SYSTEM_DelayMs(40); for(uint8_t i = 0; i < 4; i++) // why 4 times?
} ST7565_WriteByte(ST7565_CMD_POWER_CIRCUIT | 0b111); // VB=1 VR=1 VF=1
ST7565_WriteByte(ST7565_CMD_SET_START_LINE | 0); // line 0 SYSTEM_DelayMs(40);
ST7565_WriteByte(ST7565_CMD_DISPLAY_ON_OFF | 1); // D=1
SPI_WaitForUndocumentedTxFifoStatusBit();
SPI_ToggleMasterMode(&SPI0->CR, true);
if (full) ST7565_WriteByte(ST7565_CMD_SET_START_LINE | 0); // line 0
ST7565_FillScreen(0x00); ST7565_WriteByte(ST7565_CMD_DISPLAY_ON_OFF | 1); // D=1
SPI_WaitForUndocumentedTxFifoStatusBit();
SPI_ToggleMasterMode(&SPI0->CR, true);
ST7565_FillScreen(0x00);
} }
void ST7565_FixInterfGlitch(void) void ST7565_FixInterfGlitch(void)
{ {
SPI_ToggleMasterMode(&SPI0->CR, false); SPI_ToggleMasterMode(&SPI0->CR, false);
for(uint8_t i = 0; i < ARRAY_SIZE(cmds); i++) for(uint8_t i = 0; i < ARRAY_SIZE(cmds); i++)
ST7565_WriteByte(cmds[i]); ST7565_WriteByte(cmds[i]);
SPI_WaitForUndocumentedTxFifoStatusBit(); SPI_WaitForUndocumentedTxFifoStatusBit();
SPI_ToggleMasterMode(&SPI0->CR, true); SPI_ToggleMasterMode(&SPI0->CR, true);
} }
void ST7565_HardwareReset(void) void ST7565_HardwareReset(void)
{ {
GPIO_SetBit(&GPIOB->DATA, GPIOB_PIN_ST7565_RES); GPIO_SetBit(&GPIOB->DATA, GPIOB_PIN_ST7565_RES);
SYSTEM_DelayMs(1); SYSTEM_DelayMs(1);
GPIO_ClearBit(&GPIOB->DATA, GPIOB_PIN_ST7565_RES); GPIO_ClearBit(&GPIOB->DATA, GPIOB_PIN_ST7565_RES);
SYSTEM_DelayMs(20); SYSTEM_DelayMs(20);
GPIO_SetBit(&GPIOB->DATA, GPIOB_PIN_ST7565_RES); GPIO_SetBit(&GPIOB->DATA, GPIOB_PIN_ST7565_RES);
SYSTEM_DelayMs(120); SYSTEM_DelayMs(120);
} }
void ST7565_SelectColumnAndLine(uint8_t Column, uint8_t Line) void ST7565_SelectColumnAndLine(uint8_t Column, uint8_t Line)
{ {
GPIO_ClearBit(&GPIOB->DATA, GPIOB_PIN_ST7565_A0); GPIO_ClearBit(&GPIOB->DATA, GPIOB_PIN_ST7565_A0);
while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {} while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {}
SPI0->WDR = Line + 176; SPI0->WDR = Line + 176;
while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {} while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {}
SPI0->WDR = ((Column >> 4) & 0x0F) | 0x10; SPI0->WDR = ((Column >> 4) & 0x0F) | 0x10;
while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {} while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {}
SPI0->WDR = ((Column >> 0) & 0x0F); SPI0->WDR = ((Column >> 0) & 0x0F);
SPI_WaitForUndocumentedTxFifoStatusBit(); SPI_WaitForUndocumentedTxFifoStatusBit();
} }
void ST7565_WriteByte(uint8_t Value) void ST7565_WriteByte(uint8_t Value)
{ {
GPIO_ClearBit(&GPIOB->DATA, GPIOB_PIN_ST7565_A0); GPIO_ClearBit(&GPIOB->DATA, GPIOB_PIN_ST7565_A0);
while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {} while ((SPI0->FIFOST & SPI_FIFOST_TFF_MASK) != SPI_FIFOST_TFF_BITS_NOT_FULL) {}
SPI0->WDR = Value; SPI0->WDR = Value;
} }

View file

@ -22,19 +22,20 @@
#define LCD_WIDTH 128 #define LCD_WIDTH 128
#define LCD_HEIGHT 64 #define LCD_HEIGHT 64
#define FRAME_LINES 7
extern uint8_t gStatusLine[128]; extern uint8_t gStatusLine[LCD_WIDTH];
extern uint8_t gFrameBuffer[7][128]; extern uint8_t gFrameBuffer[FRAME_LINES][LCD_WIDTH];
void ST7565_DrawLine(const unsigned int Column, const unsigned int Line, const unsigned int Size, const uint8_t *pBitmap); void ST7565_DrawLine(const unsigned int Column, const unsigned int Line, const uint8_t *pBitmap, const unsigned int Size);
void ST7565_BlitFullScreen(void); void ST7565_BlitFullScreen(void);
void ST7565_BlitLine(unsigned line);
void ST7565_BlitStatusLine(void); void ST7565_BlitStatusLine(void);
void ST7565_FillScreen(uint8_t Value); void ST7565_FillScreen(uint8_t Value);
void ST7565_Init(const bool full); void ST7565_Init(void);
void ST7565_FixInterfGlitch(void); void ST7565_FixInterfGlitch(void);
void ST7565_HardwareReset(void); void ST7565_HardwareReset(void);
void ST7565_SelectColumnAndLine(uint8_t Column, uint8_t Line); void ST7565_SelectColumnAndLine(uint8_t Column, uint8_t Line);
void ST7565_WriteByte(uint8_t Value); void ST7565_WriteByte(uint8_t Value);
#endif #endif

View file

@ -19,34 +19,33 @@
#include "settings.h" #include "settings.h"
// the BK4819 has 2 bands it covers, 18MHz ~ 630MHz and 760MHz ~ 1300MHz // the BK4819 has 2 bands it covers, 18MHz ~ 630MHz and 760MHz ~ 1300MHz
const freq_band_table_t BX4819_band1 = { 1800000, 63000000};
const freq_band_table_t BX4819_band2 = {84000000, 130000000};
const freq_band_table_t frequencyBandTable[7] = #define BX4819_band1_lower 1800000
{ #define BX4819_band2_upper 130000000
#ifndef ENABLE_WIDE_RX
// QS original const freq_band_table_t BX4819_band1 = {BX4819_band1_lower, 63000000};
{.lower = 5000000, .upper = 7600000}, const freq_band_table_t BX4819_band2 = {84000000, BX4819_band2_upper};
{.lower = 10800000, .upper = 13700000},
{.lower = 13700000, .upper = 17400000}, const freq_band_table_t frequencyBandTable[] =
{.lower = 17400000, .upper = 35000000}, {
{.lower = 35000000, .upper = 40000000}, #ifndef ENABLE_WIDE_RX
{.lower = 40000000, .upper = 47000000}, // QS original
{.lower = 47000000, .upper = 60000000} [BAND1_50MHz ]={.lower = 5000000, .upper = 7600000},
#else [BAND7_470MHz]={.lower = 47000000, .upper = 60000000},
// extended range #else
{.lower = BX4819_band1.lower, .upper = 10800000}, // extended range
{.lower = 10800000, .upper = 13700000}, [BAND1_50MHz ]={.lower = BX4819_band1_lower, .upper = 10800000},
{.lower = 13700000, .upper = 17400000}, [BAND7_470MHz]={.lower = 47000000, .upper = BX4819_band2_upper},
{.lower = 17400000, .upper = 35000000}, #endif
{.lower = 35000000, .upper = 40000000}, [BAND2_108MHz]={.lower = 10800000, .upper = 13700000},
{.lower = 40000000, .upper = 47000000}, [BAND3_137MHz]={.lower = 13700000, .upper = 17400000},
{.lower = 47000000, .upper = BX4819_band2.upper} [BAND4_174MHz]={.lower = 17400000, .upper = 35000000},
#endif [BAND5_350MHz]={.lower = 35000000, .upper = 40000000},
}; [BAND6_400MHz]={.lower = 40000000, .upper = 47000000}
};
#ifdef ENABLE_NOAA #ifdef ENABLE_NOAA
const uint32_t NoaaFrequencyTable[10] = const uint32_t NoaaFrequencyTable[10] =
{ {
16255000, 16255000,
16240000, 16240000,
@ -63,159 +62,159 @@ const freq_band_table_t frequencyBandTable[7] =
const uint16_t gStepFrequencyTable[] = { const uint16_t gStepFrequencyTable[] = {
250, 500, 625, 1000, 1250, 2500, 833, 250, 500, 625, 1000, 1250, 2500, 833,
1, 5, 10, 25, 50, 100, 125, 1500, 3000, 5000, 10000, 12500, 25000, 50000 1, 5, 10, 25, 50, 100, 125, 1500, 3000, 5000, 10000, 12500, 25000, 50000
};
const uint8_t StepSortedIndexes[] = {
STEP_0_01kHz, STEP_0_05kHz, STEP_0_1kHz, STEP_0_25kHz, STEP_0_5kHz, STEP_1kHz, STEP_1_25kHz, STEP_2_5kHz, STEP_5kHz, STEP_6_25kHz,
STEP_8_33kHz, STEP_10kHz, STEP_12_5kHz, STEP_15kHz, STEP_25kHz, STEP_30kHz, STEP_50kHz, STEP_100kHz,
STEP_125kHz, STEP_250kHz, STEP_500kHz
}; };
uint8_t FREQUENCY_GetStepIdxFromSortedIdx(uint8_t sortedIdx)
const STEP_Setting_t StepSortedIndexes[] = {
STEP_0_01kHz, STEP_0_05kHz, STEP_0_1kHz, STEP_0_25kHz, STEP_0_5kHz, STEP_1kHz, STEP_1_25kHz, STEP_2_5kHz, STEP_5kHz, STEP_6_25kHz,
STEP_8_33kHz, STEP_10kHz, STEP_12_5kHz, STEP_15kHz, STEP_25kHz, STEP_30kHz, STEP_50kHz, STEP_100kHz,
STEP_125kHz, STEP_250kHz, STEP_500kHz
};
STEP_Setting_t FREQUENCY_GetStepIdxFromSortedIdx(uint8_t sortedIdx)
{ {
return StepSortedIndexes[sortedIdx]; return StepSortedIndexes[sortedIdx];
} }
uint8_t FREQUENCY_GetSortedIdxFromStepIdx(uint8_t stepIdx)
uint32_t FREQUENCY_GetSortedIdxFromStepIdx(uint8_t stepIdx)
{ {
for(uint8_t i = 0; i < ARRAY_SIZE(gStepFrequencyTable); i++) for(uint8_t i = 0; i < ARRAY_SIZE(gStepFrequencyTable); i++)
if(StepSortedIndexes[i] == stepIdx) if(StepSortedIndexes[i] == stepIdx)
return i; return i;
return 0; return 0;
} }
FREQUENCY_Band_t FREQUENCY_GetBand(uint32_t Frequency) FREQUENCY_Band_t FREQUENCY_GetBand(uint32_t Frequency)
{ {
int band; for (int band = ARRAY_SIZE(frequencyBandTable) - 1; band >= 0; band--)
for (band = ARRAY_SIZE(frequencyBandTable) - 1; band >= 0; band--) if (Frequency >= frequencyBandTable[band].lower)
if (Frequency >= frequencyBandTable[band].lower)
// if (Frequency < frequencyBandTable[band].upper) // if (Frequency < frequencyBandTable[band].upper)
return (FREQUENCY_Band_t)band; return (FREQUENCY_Band_t)band;
return BAND1_50MHz; return BAND1_50MHz;
// return BAND_NONE; // return BAND_NONE;
} }
uint8_t FREQUENCY_CalculateOutputPower(uint8_t TxpLow, uint8_t TxpMid, uint8_t TxpHigh, int32_t LowerLimit, int32_t Middle, int32_t UpperLimit, int32_t Frequency) uint8_t FREQUENCY_CalculateOutputPower(uint8_t TxpLow, uint8_t TxpMid, uint8_t TxpHigh, int32_t LowerLimit, int32_t Middle, int32_t UpperLimit, int32_t Frequency)
{ {
if (Frequency <= LowerLimit) if (Frequency <= LowerLimit)
return TxpLow; return TxpLow;
if (UpperLimit <= Frequency) if (UpperLimit <= Frequency)
return TxpHigh; return TxpHigh;
if (Frequency <= Middle) if (Frequency <= Middle)
{ {
TxpMid += ((TxpMid - TxpLow) * (Frequency - LowerLimit)) / (Middle - LowerLimit); TxpMid += ((TxpMid - TxpLow) * (Frequency - LowerLimit)) / (Middle - LowerLimit);
return TxpMid; return TxpMid;
} }
TxpMid += ((TxpHigh - TxpMid) * (Frequency - Middle)) / (UpperLimit - Middle); TxpMid += ((TxpHigh - TxpMid) * (Frequency - Middle)) / (UpperLimit - Middle);
return TxpMid; return TxpMid;
} }
uint32_t FREQUENCY_RoundToStep(uint32_t freq, uint16_t step) uint32_t FREQUENCY_RoundToStep(uint32_t freq, uint16_t step)
{ {
if(step == 833) { if(step == 833) {
uint32_t base = freq/2500*2500; uint32_t base = freq/2500*2500;
int chno = (freq - base) / 700; // convert entered aviation 8.33Khz channel number scheme to actual frequency. int chno = (freq - base) / 700; // convert entered aviation 8.33Khz channel number scheme to actual frequency.
return base + (chno * 833) + (chno == 3); return base + (chno * 833) + (chno == 3);
} }
if(step == 1) if(step == 1)
return freq; return freq;
return (freq + (step + 1) / 2) / step * step; return (freq + (step + 1) / 2) / step * step;
} }
int TX_freq_check(const uint32_t Frequency) int32_t TX_freq_check(const uint32_t Frequency)
{ // return '0' if TX frequency is allowed { // return '0' if TX frequency is allowed
// otherwise return '-1' // otherwise return '-1'
if (Frequency < frequencyBandTable[0].lower || Frequency > frequencyBandTable[ARRAY_SIZE(frequencyBandTable) - 1].upper) if (Frequency < frequencyBandTable[0].lower || Frequency > frequencyBandTable[ARRAY_SIZE(frequencyBandTable) - 1].upper)
return -1; // not allowed outside this range return -1; // not allowed outside this range
if (Frequency >= BX4819_band1.upper && Frequency < BX4819_band2.lower) if (Frequency >= BX4819_band1.upper && Frequency < BX4819_band2.lower)
return -1; // BX chip does not work in this range return -1; // BX chip does not work in this range
switch (gSetting_F_LOCK) switch (gSetting_F_LOCK)
{ {
case F_LOCK_DEF: case F_LOCK_DEF:
if (Frequency >= frequencyBandTable[BAND3_137MHz].lower && Frequency < frequencyBandTable[BAND3_137MHz].upper) if (Frequency >= frequencyBandTable[BAND3_137MHz].lower && Frequency < frequencyBandTable[BAND3_137MHz].upper)
return 0; return 0;
// if (Frequency >= frequencyBandTable[BAND4_174MHz].lower && Frequency < frequencyBandTable[BAND4_174MHz].upper) // if (Frequency >= frequencyBandTable[BAND4_174MHz].lower && Frequency < frequencyBandTable[BAND4_174MHz].upper)
// if (gSetting_F_LOCK==F_LOCK_ALL) // if (gSetting_200TX)
// return 0; // return 0;
// if (Frequency >= frequencyBandTable[BAND5_350MHz].lower && Frequency < frequencyBandTable[BAND5_350MHz].upper) // if (Frequency >= frequencyBandTable[BAND5_350MHz].lower && Frequency < frequencyBandTable[BAND5_350MHz].upper)
// if (gSetting_F_LOCK==F_LOCK_ALL) // if (gSetting_350TX && gSetting_350EN)
// return 0; // return 0;
if (Frequency >= frequencyBandTable[BAND6_400MHz].lower && Frequency < frequencyBandTable[BAND6_400MHz].upper) if (Frequency >= frequencyBandTable[BAND6_400MHz].lower && Frequency < frequencyBandTable[BAND6_400MHz].upper)
return 0; return 0;
// if (Frequency >= frequencyBandTable[BAND7_470MHz].lower && Frequency <= 60000000) // if (Frequency >= frequencyBandTable[BAND7_470MHz].lower && Frequency <= 60000000)
// if (gSetting_F_LOCK==F_LOCK_ALL) // if (gSetting_500TX)
// return 0; // return 0;
break; break;
case F_LOCK_FCC: case F_LOCK_FCC:
if (Frequency >= 14400000 && Frequency < 14800000) if (Frequency >= 14400000 && Frequency < 14800000)
return 0; return 0;
if (Frequency >= 42000000 && Frequency < 45000000) if (Frequency >= 42000000 && Frequency < 45000000)
return 0; return 0;
break; break;
case F_LOCK_CE: case F_LOCK_CE:
if (Frequency >= 14400000 && Frequency < 14600000) if (Frequency >= 14400000 && Frequency < 14600000)
return 0; return 0;
if (Frequency >= 43000000 && Frequency < 44000000) if (Frequency >= 43000000 && Frequency < 44000000)
return 0; return 0;
break; break;
case F_LOCK_GB: case F_LOCK_GB:
if (Frequency >= 14400000 && Frequency < 14800000) if (Frequency >= 14400000 && Frequency < 14800000)
return 0; return 0;
if (Frequency >= 43000000 && Frequency < 44000000) if (Frequency >= 43000000 && Frequency < 44000000)
return 0; return 0;
break; break;
case F_LOCK_430: case F_LOCK_430:
if (Frequency >= frequencyBandTable[BAND3_137MHz].lower && Frequency < 17400000) if (Frequency >= frequencyBandTable[BAND3_137MHz].lower && Frequency < 17400000)
return 0; return 0;
if (Frequency >= 40000000 && Frequency < 43000000) if (Frequency >= 40000000 && Frequency < 43000000)
return 0; return 0;
break; break;
case F_LOCK_438: case F_LOCK_438:
if (Frequency >= frequencyBandTable[BAND3_137MHz].lower && Frequency < 17400000) if (Frequency >= frequencyBandTable[BAND3_137MHz].lower && Frequency < 17400000)
return 0; return 0;
if (Frequency >= 40000000 && Frequency < 43800000) if (Frequency >= 40000000 && Frequency < 43800000)
return 0; return 0;
break; break;
case F_LOCK_ALL: case F_LOCK_ALL:
break; break;
case F_LOCK_NONE: case F_LOCK_NONE:
for (uint8_t i = 0; i < ARRAY_SIZE(frequencyBandTable); i++) for (uint8_t i = 0; i < ARRAY_SIZE(frequencyBandTable); i++)
if (Frequency >= frequencyBandTable[i].lower && Frequency < frequencyBandTable[i].upper) if (Frequency >= frequencyBandTable[i].lower && Frequency < frequencyBandTable[i].upper)
return 0; return 0;
break; break;
} }
// dis-allowed TX frequency // dis-allowed TX frequency
return -1; return -1;
} }
int RX_freq_check(const uint32_t Frequency) int32_t RX_freq_check(const uint32_t Frequency)
{ // return '0' if RX frequency is allowed { // return '0' if RX frequency is allowed
// otherwise return '-1' // otherwise return '-1'
if (Frequency < frequencyBandTable[0].lower || Frequency > frequencyBandTable[ARRAY_SIZE(frequencyBandTable) - 1].upper) if (Frequency < frequencyBandTable[0].lower || Frequency > frequencyBandTable[ARRAY_SIZE(frequencyBandTable) - 1].upper)
return -1; return -1;
if (Frequency >= BX4819_band1.upper && Frequency < BX4819_band2.lower) if (Frequency >= BX4819_band1.upper && Frequency < BX4819_band2.lower)
return -1; return -1;
return 0; // OK frequency return 0; // OK frequency
} }

View file

@ -19,9 +19,11 @@
#include <stdint.h> #include <stdint.h>
#define _1GHz_in_KHz 100000000
typedef struct { typedef struct {
const uint32_t lower; const uint32_t lower;
const uint32_t upper; const uint32_t upper;
} freq_band_table_t; } freq_band_table_t;
extern const freq_band_table_t BX4819_band1; extern const freq_band_table_t BX4819_band1;
@ -30,56 +32,57 @@ extern const freq_band_table_t BX4819_band2;
extern const freq_band_table_t frequencyBandTable[7]; extern const freq_band_table_t frequencyBandTable[7];
typedef enum { typedef enum {
BAND_NONE = -1, BAND_NONE = -1,
BAND1_50MHz = 0, BAND1_50MHz = 0,
BAND2_108MHz, BAND2_108MHz,
BAND3_137MHz, BAND3_137MHz,
BAND4_174MHz, BAND4_174MHz,
BAND5_350MHz, BAND5_350MHz,
BAND6_400MHz, BAND6_400MHz,
BAND7_470MHz BAND7_470MHz,
BAND_LAST_ELEMENT //keep this guard as last element
} FREQUENCY_Band_t; } FREQUENCY_Band_t;
typedef enum { typedef enum {
STEP_2_5kHz, STEP_2_5kHz,
STEP_5kHz, STEP_5kHz,
STEP_6_25kHz, STEP_6_25kHz,
STEP_10kHz, STEP_10kHz,
STEP_12_5kHz, STEP_12_5kHz,
STEP_25kHz, STEP_25kHz,
STEP_8_33kHz, STEP_8_33kHz,
STEP_0_01kHz, STEP_0_01kHz,
STEP_0_05kHz, STEP_0_05kHz,
STEP_0_1kHz, STEP_0_1kHz,
STEP_0_25kHz, STEP_0_25kHz,
STEP_0_5kHz, STEP_0_5kHz,
STEP_1kHz, STEP_1kHz,
STEP_1_25kHz, STEP_1_25kHz,
STEP_15kHz, STEP_15kHz,
STEP_30kHz, STEP_30kHz,
STEP_50kHz, STEP_50kHz,
STEP_100kHz, STEP_100kHz,
STEP_125kHz, STEP_125kHz,
STEP_250kHz, STEP_250kHz,
STEP_500kHz, STEP_500kHz,
} STEP_Setting_t; } STEP_Setting_t;
extern const uint16_t gStepFrequencyTable[21]; extern const uint16_t gStepFrequencyTable[21];
#ifdef ENABLE_NOAA #ifdef ENABLE_NOAA
extern const uint32_t NoaaFrequencyTable[10]; extern const uint32_t NoaaFrequencyTable[10];
#endif #endif
FREQUENCY_Band_t FREQUENCY_GetBand(uint32_t Frequency); FREQUENCY_Band_t FREQUENCY_GetBand(uint32_t Frequency);
uint8_t FREQUENCY_CalculateOutputPower(uint8_t TxpLow, uint8_t TxpMid, uint8_t TxpHigh, int32_t LowerLimit, int32_t Middle, int32_t UpperLimit, int32_t Frequency); uint8_t FREQUENCY_CalculateOutputPower(uint8_t TxpLow, uint8_t TxpMid, uint8_t TxpHigh, int32_t LowerLimit, int32_t Middle, int32_t UpperLimit, int32_t Frequency);
uint32_t FREQUENCY_RoundToStep(uint32_t freq, uint16_t step); uint32_t FREQUENCY_RoundToStep(uint32_t freq, uint16_t step);
uint8_t FREQUENCY_GetStepIdxFromSortedIdx(uint8_t sortedIdx); STEP_Setting_t FREQUENCY_GetStepIdxFromSortedIdx(uint8_t sortedIdx);
uint8_t FREQUENCY_GetSortedIdxFromStepIdx(uint8_t step); uint32_t FREQUENCY_GetSortedIdxFromStepIdx(uint8_t step);
int TX_freq_check(const uint32_t Frequency); int32_t TX_freq_check(const uint32_t Frequency);
int RX_freq_check(const uint32_t Frequency); int32_t RX_freq_check(const uint32_t Frequency);
#endif #endif

25
radio.c
View file

@ -17,7 +17,7 @@
#include <stdint.h> #include <stdint.h>
#include "app/mdc1200.h" #include "app/mdc1200.h"
#include <string.h> #include <string.h>
#include "am_fix.h"
#include "app/dtmf.h" #include "app/dtmf.h"
#ifdef ENABLE_FMRADIO #ifdef ENABLE_FMRADIO
#include "app/fm.h" #include "app/fm.h"
@ -353,8 +353,8 @@ void RADIO_ConfigureChannel(const unsigned int VFO, const unsigned int configure
else else
pVfo->freq_config_RX.Frequency = info.Frequency; pVfo->freq_config_RX.Frequency = info.Frequency;
if (info.Offset >= 100000000) if (info.Offset >= _1GHz_in_KHz)
info.Offset = 1000000; info.Offset = _1GHz_in_KHz / 100;
pVfo->TX_OFFSET_FREQUENCY = info.Offset; pVfo->TX_OFFSET_FREQUENCY = info.Offset;
// *************** // ***************
@ -792,7 +792,8 @@ void RADIO_SetupRegisters(bool switchToForeground)
BK4819_DisableDTMF(); BK4819_DisableDTMF();
} }
#endif #endif
BK4819_SetAGC(1);
BK4819_InitAGC();
// enable/disable BK4819 selected interrupts // enable/disable BK4819 selected interrupts
BK4819_WriteRegister(BK4819_REG_3F, InterruptMask); BK4819_WriteRegister(BK4819_REG_3F, InterruptMask);
@ -912,7 +913,6 @@ void RADIO_SetTxParameters(void)
void RADIO_SetModulation(ModulationMode_t modulation) void RADIO_SetModulation(ModulationMode_t modulation)
{ {
static ModulationMode_t m = MODULATION_UKNOWN;
BK4819_AF_Type_t mod; BK4819_AF_Type_t mod;
switch(modulation) { switch(modulation) {
default: default:
@ -937,16 +937,15 @@ void RADIO_SetModulation(ModulationMode_t modulation)
} }
BK4819_SetAF(mod); BK4819_SetAF(mod);
if(m != modulation) {
m = modulation;
BK4819_SetRegValue(afDacGainRegSpec, 0xF); BK4819_SetRegValue(afDacGainRegSpec, 0xF);
BK4819_WriteRegister(BK4819_REG_3D, modulation == MODULATION_USB ? 0 : 0x2AAB); BK4819_WriteRegister(BK4819_REG_3D, modulation == MODULATION_USB ? 0 : 0x2AAB);
BK4819_SetRegValue(afcDisableRegSpec, modulation != MODULATION_FM); BK4819_SetRegValue(afcDisableRegSpec, modulation != MODULATION_FM);
#ifdef ENABLE_AM_FIX #ifdef ENABLE_AM_FIX
BK4819_SetAGC(gRxVfo->Modulation != MODULATION_AM || !gSetting_AM_fix); if(modulation == MODULATION_AM && gSetting_AM_fix)
BK4819_InitAGC(); BK4819_SetAGC(0);
#endif #endif
}
} }
void RADIO_SetVfoState(VfoState_t State) void RADIO_SetVfoState(VfoState_t State)

View file

@ -614,29 +614,33 @@ void SETTINGS_SaveChannel(uint8_t Channel, uint8_t VFO, const VFO_Info_t *pVFO,
if (Mode >= 2 || !IS_MR_CHANNEL(Channel)) if (Mode >= 2 || !IS_MR_CHANNEL(Channel))
{ // copy VFO to a channel { // copy VFO to a channel
uint8_t State[8];
((uint32_t *)State)[0] = pVFO->freq_config_RX.Frequency; union {
((uint32_t *)State)[1] = pVFO->TX_OFFSET_FREQUENCY; uint8_t _8[8];
EEPROM_WriteBuffer(OffsetVFO + 0, State); uint32_t _32[2];
} State;
State[0] = pVFO->freq_config_RX.Code; State._32[0] = pVFO->freq_config_RX.Frequency;
State[1] = pVFO->freq_config_TX.Code; State._32[1] = pVFO->TX_OFFSET_FREQUENCY;
State[2] = (pVFO->freq_config_TX.CodeType << 4) | pVFO->freq_config_RX.CodeType; EEPROM_WriteBuffer(OffsetVFO + 0, State._32);
State[3] = (pVFO->Modulation << 4) | pVFO->TX_OFFSET_FREQUENCY_DIRECTION;
State[4] = 0 State._8[0] = pVFO->freq_config_RX.Code;
State._8[1] = pVFO->freq_config_TX.Code;
State._8[2] = (pVFO->freq_config_TX.CodeType << 4) | pVFO->freq_config_RX.CodeType;
State._8[3] = (pVFO->Modulation << 4) | pVFO->TX_OFFSET_FREQUENCY_DIRECTION;
State._8[4] = 0
| (pVFO->BUSY_CHANNEL_LOCK << 4) | (pVFO->BUSY_CHANNEL_LOCK << 4)
| (pVFO->OUTPUT_POWER << 2) | (pVFO->OUTPUT_POWER << 2)
| (pVFO->CHANNEL_BANDWIDTH << 1) | (pVFO->CHANNEL_BANDWIDTH << 1)
| (pVFO->FrequencyReverse << 0); | (pVFO->FrequencyReverse << 0);
State[5] = ((pVFO->DTMF_PTT_ID_TX_MODE & 7u) << 1) State._8[5] = ((pVFO->DTMF_PTT_ID_TX_MODE & 7u) << 1)
#ifdef ENABLE_DTMF_CALLING #ifdef ENABLE_DTMF_CALLING
| ((pVFO->DTMF_DECODING_ENABLE & 1u) << 0) | ((pVFO->DTMF_DECODING_ENABLE & 1u) << 0)
#endif #endif
; ;
State[6] = pVFO->STEP_SETTING; State._8[6] = pVFO->STEP_SETTING;
State[7] = pVFO->SCRAMBLING_TYPE; State._8[7] = pVFO->SCRAMBLING_TYPE;
EEPROM_WriteBuffer(OffsetVFO + 8, State); EEPROM_WriteBuffer(OffsetVFO + 8, State._8);
SETTINGS_UpdateChannel(Channel, pVFO, true); SETTINGS_UpdateChannel(Channel, pVFO, true);

View file

@ -52,5 +52,5 @@ void UI_DisplayBattery(uint8_t level, uint8_t blink)
{ {
uint8_t bitmap[sizeof(BITMAP_BatteryLevel1)]; uint8_t bitmap[sizeof(BITMAP_BatteryLevel1)];
UI_DrawBattery(bitmap, level, blink); UI_DrawBattery(bitmap, level, blink);
ST7565_DrawLine(LCD_WIDTH - sizeof(bitmap), 0, sizeof(bitmap), bitmap); ST7565_DrawLine(LCD_WIDTH - sizeof(bitmap), 0, bitmap, sizeof(bitmap));
} }

View file

@ -246,7 +246,52 @@ void UI_UpdateRSSI(const int16_t rssi, const int vfo)
} }
} }
#ifdef ENABLE_AGC_SHOW_DATA
static void PrintAGC(bool now)
{
char buf[20];
memset(gFrameBuffer[3], 0, 128);
union {
struct {
uint16_t _ : 5;
uint16_t agcSigStrength : 7;
int16_t gainIdx : 3;
uint16_t agcEnab : 1;
};
uint16_t __raw;
} reg7e;
reg7e.__raw = BK4819_ReadRegister(0x7E);
uint8_t gainAddr = reg7e.gainIdx < 0 ? 0x14 : 0x10 + reg7e.gainIdx;
union {
struct {
uint16_t pga:3;
uint16_t mixer:2;
uint16_t lna:3;
uint16_t lnaS:2;
};
uint16_t __raw;
} agcGainReg;
agcGainReg.__raw = BK4819_ReadRegister(gainAddr);
int8_t lnaShortTab[] = {-28, -24, -19, 0};
int8_t lnaTab[] = {-24, -19, -14, -9, -6, -4, -2, 0};
int8_t mixerTab[] = {-8, -6, -3, 0};
int8_t pgaTab[] = {-33, -27, -21, -15, -9, -6, -3, 0};
int16_t agcGain = lnaShortTab[agcGainReg.lnaS] + lnaTab[agcGainReg.lna] + mixerTab[agcGainReg.mixer] + pgaTab[agcGainReg.pga];
sprintf(buf, "%d%2d %2d %2d %3d", reg7e.agcEnab, reg7e.gainIdx, -agcGain, reg7e.agcSigStrength, BK4819_GetRSSI());
UI_PrintStringSmall(buf, 2, 0, 3);
if(now)
ST7565_BlitLine(3);
}
#endif
void UI_MAIN_TimeSlice500ms(void)
{
#ifdef ENABLE_AGC_SHOW_DATA
if(gScreenToDisplay==DISPLAY_MAIN)
PrintAGC(true);
#endif
}
// *************************************************************************** // ***************************************************************************
void UI_DisplayMain(void) void UI_DisplayMain(void)
@ -428,7 +473,7 @@ void UI_DisplayMain(void)
{ // frequency mode { // frequency mode
// show the frequency band number // show the frequency band number
const unsigned int x = 2; const unsigned int x = 2;
char * buf = gEeprom.VfoInfo[vfo_num].pRX->Frequency < 100000000 ? "" : "+"; char * buf = gEeprom.VfoInfo[vfo_num].pRX->Frequency < _1GHz_in_KHz ? "" : "+";
sprintf(String, "F%u%s", 1 + gEeprom.ScreenChannel[vfo_num] - FREQ_CHANNEL_FIRST, buf); sprintf(String, "F%u%s", 1 + gEeprom.ScreenChannel[vfo_num] - FREQ_CHANNEL_FIRST, buf);
UI_PrintStringSmall(String, x, 0, line + 1); UI_PrintStringSmall(String, x, 0, line + 1);
} }
@ -473,7 +518,7 @@ void UI_DisplayMain(void)
const char * ascii = INPUTBOX_GetAscii(); const char * ascii = INPUTBOX_GetAscii();
bool isGigaF = frequency>=100000000; bool isGigaF = frequency>=_1GHz_in_KHz;
sprintf(String, "%.*s.%.3s", 3 + isGigaF, ascii, ascii + 3 + isGigaF); sprintf(String, "%.*s.%.3s", 3 + isGigaF, ascii, ascii + 3 + isGigaF);
#ifdef ENABLE_BIG_FREQ #ifdef ENABLE_BIG_FREQ
if(!isGigaF) { if(!isGigaF) {
@ -528,8 +573,8 @@ void UI_DisplayMain(void)
case MDF_FREQUENCY: // show the channel frequency case MDF_FREQUENCY: // show the channel frequency
sprintf(String, "%3u.%05u", frequency / 100000, frequency % 100000); sprintf(String, "%3u.%05u", frequency / 100000, frequency % 100000);
#ifdef ENABLE_BIG_FREQ #ifdef ENABLE_BIG_FREQ
if(frequency < 100000000) { if(frequency < _1GHz_in_KHz) {
// show the remaining 2 small frequency digits // show the remaining 2 small frequency digits
UI_PrintStringSmall(String + 7, 113, 0, line + 1); UI_PrintStringSmall(String + 7, 113, 0, line + 1);
String[7] = 0; String[7] = 0;
// show the main large frequency digits // show the main large frequency digits
@ -583,8 +628,8 @@ void UI_DisplayMain(void)
sprintf(String, "%3u.%05u", frequency / 100000, frequency % 100000); sprintf(String, "%3u.%05u", frequency / 100000, frequency % 100000);
#ifdef ENABLE_BIG_FREQ #ifdef ENABLE_BIG_FREQ
if(frequency < 100000000) { if(frequency < _1GHz_in_KHz) {
// show the remaining 2 small frequency digits // show the remaining 2 small frequency digits
UI_PrintStringSmall(String + 7, 113, 0, line + 1); UI_PrintStringSmall(String + 7, 113, 0, line + 1);
String[7] = 0; String[7] = 0;
// show the main large frequency digits // show the main large frequency digits
@ -702,7 +747,10 @@ void UI_DisplayMain(void)
UI_PrintStringSmall("SCR", LCD_WIDTH + 106, 0, line + 1); UI_PrintStringSmall("SCR", LCD_WIDTH + 106, 0, line + 1);
} }
#ifdef ENABLE_AGC_SHOW_DATA
center_line = CENTER_LINE_IN_USE;
PrintAGC(false);
#endif
if (center_line == CENTER_LINE_NONE) if (center_line == CENTER_LINE_NONE)
{ // we're free to use the middle line { // we're free to use the middle line

View file

@ -34,6 +34,7 @@ extern center_line_t center_line;
void UI_DisplayAudioBar(void); void UI_DisplayAudioBar(void);
void UI_UpdateRSSI(const int16_t rssi, const int vfo); void UI_UpdateRSSI(const int16_t rssi, const int vfo);
void UI_DisplayMain(void); void UI_DisplayMain(void);
void UI_MAIN_TimeSlice500ms(void);
extern const int8_t dBmCorrTable[7]; extern const int8_t dBmCorrTable[7];
#endif #endif