/* Copyright 2023 Dual Tachyon * https://github.com/DualTachyon * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "driver/bk4819.h" #include <stdint.h> #include "app/mdc1200.h" #include <string.h> #include "am_fix.h" #include "app/dtmf.h" #ifdef ENABLE_FMRADIO #include "app/fm.h" #endif #include "audio.h" #include "bsp/dp32g030/gpio.h" #include "dcs.h" #include "driver/bk4819.h" #include "driver/eeprom.h" #include "driver/gpio.h" #include "driver/system.h" #include "frequencies.h" #include "functions.h" #include "helper/battery.h" #include "misc.h" #include "radio.h" #include "settings.h" #include "ui/menu.h" VFO_Info_t *gTxVfo; VFO_Info_t *gRxVfo; VFO_Info_t *gCurrentVfo; DCS_CodeType_t gCurrentCodeType; VfoState_t VfoState[2]; const char gModulationStr[MODULATION_UKNOWN][4] = { [MODULATION_FM]="FM", [MODULATION_AM]="AM", [MODULATION_USB]="USB", #ifdef ENABLE_BYP_RAW_DEMODULATORS [MODULATION_BYP]="BYP", [MODULATION_RAW]="RAW" #endif }; bool RADIO_CheckValidChannel(uint16_t Channel, bool bCheckScanList, uint8_t VFO) { // return true if the channel appears valid ChannelAttributes_t att; uint8_t PriorityCh1; uint8_t PriorityCh2; if (!IS_MR_CHANNEL(Channel)) return false; att = gMR_ChannelAttributes[Channel]; if (att.band > BAND7_470MHz) return false; if (bCheckScanList) { switch (VFO) { case 0: if (!att.scanlist1) return false; PriorityCh1 = gEeprom.SCANLIST_PRIORITY_CH1[0]; PriorityCh2 = gEeprom.SCANLIST_PRIORITY_CH2[0]; break; case 1: if (!att.scanlist2) return false; PriorityCh1 = gEeprom.SCANLIST_PRIORITY_CH1[1]; PriorityCh2 = gEeprom.SCANLIST_PRIORITY_CH2[1]; break; default: return true; } if (PriorityCh1 == Channel) return false; if (PriorityCh2 == Channel) return false; } return true; } uint8_t RADIO_FindNextChannel(uint8_t Channel, int8_t Direction, bool bCheckScanList, uint8_t VFO) { unsigned int i; for (i = 0; IS_MR_CHANNEL(i); i++) { if (Channel == 0xFF) Channel = MR_CHANNEL_LAST; else if (!IS_MR_CHANNEL(Channel)) Channel = MR_CHANNEL_FIRST; if (RADIO_CheckValidChannel(Channel, bCheckScanList, VFO)) return Channel; Channel += Direction; } return 0xFF; } void RADIO_InitInfo(VFO_Info_t *pInfo, const uint8_t ChannelSave, const uint32_t Frequency) { memset(pInfo, 0, sizeof(*pInfo)); pInfo->Band = FREQUENCY_GetBand(Frequency); pInfo->SCANLIST1_PARTICIPATION = false; pInfo->SCANLIST2_PARTICIPATION = false; pInfo->STEP_SETTING = STEP_12_5kHz; pInfo->StepFrequency = gStepFrequencyTable[pInfo->STEP_SETTING]; pInfo->CHANNEL_SAVE = ChannelSave; pInfo->FrequencyReverse = false; pInfo->OUTPUT_POWER = OUTPUT_POWER_LOW; pInfo->freq_config_RX.Frequency = Frequency; pInfo->freq_config_TX.Frequency = Frequency; pInfo->pRX = &pInfo->freq_config_RX; pInfo->pTX = &pInfo->freq_config_TX; pInfo->Compander = 0; // off if (ChannelSave == (FREQ_CHANNEL_FIRST + BAND2_108MHz)) pInfo->Modulation = MODULATION_AM; else pInfo->Modulation = MODULATION_FM; RADIO_ConfigureSquelchAndOutputPower(pInfo); } void RADIO_ConfigureChannel(const unsigned int VFO, const unsigned int configure) { VFO_Info_t *pVfo = &gEeprom.VfoInfo[VFO]; // if (!gSetting_350EN) { // if (gEeprom.FreqChannel[VFO] == FREQ_CHANNEL_FIRST + BAND5_350MHz) // gEeprom.FreqChannel[VFO] = FREQ_CHANNEL_FIRST + BAND6_400MHz; // // if (gEeprom.ScreenChannel[VFO] == FREQ_CHANNEL_FIRST + BAND5_350MHz) // gEeprom.ScreenChannel[VFO] = FREQ_CHANNEL_FIRST + BAND6_400MHz; // } uint8_t channel = gEeprom.ScreenChannel[VFO]; if (IS_VALID_CHANNEL(channel)) { #ifdef ENABLE_NOAA if (channel >= NOAA_CHANNEL_FIRST) { RADIO_InitInfo(pVfo, gEeprom.ScreenChannel[VFO], NoaaFrequencyTable[channel - NOAA_CHANNEL_FIRST]); if (gEeprom.CROSS_BAND_RX_TX == CROSS_BAND_OFF) return; gEeprom.CROSS_BAND_RX_TX = CROSS_BAND_OFF; gUpdateStatus = true; return; } #endif if (IS_MR_CHANNEL(channel)) { channel = RADIO_FindNextChannel(channel, RADIO_CHANNEL_UP, false, VFO); if (channel == 0xFF) { channel = gEeprom.FreqChannel[VFO]; gEeprom.ScreenChannel[VFO] = gEeprom.FreqChannel[VFO]; } else { gEeprom.ScreenChannel[VFO] = channel; gEeprom.MrChannel[VFO] = channel; } } } else channel = FREQ_CHANNEL_LAST - 1; ChannelAttributes_t att = gMR_ChannelAttributes[channel]; if (att.__val == 0xFF) { // invalid/unused channel if (IS_MR_CHANNEL(channel)) { channel = gEeprom.FreqChannel[VFO]; gEeprom.ScreenChannel[VFO] = channel; } uint8_t bandIdx = channel - FREQ_CHANNEL_FIRST; RADIO_InitInfo(pVfo, channel, frequencyBandTable[bandIdx].lower); return; } uint8_t band = att.band; if (band > BAND7_470MHz) { band = BAND6_400MHz; } bool bParticipation1; bool bParticipation2; if (IS_MR_CHANNEL(channel)) { bParticipation1 = att.scanlist1; bParticipation2 = att.scanlist2; } else { band = channel - FREQ_CHANNEL_FIRST; bParticipation1 = true; bParticipation2 = true; } pVfo->Band = band; pVfo->SCANLIST1_PARTICIPATION = bParticipation1; pVfo->SCANLIST2_PARTICIPATION = bParticipation2; pVfo->CHANNEL_SAVE = channel; uint16_t base; if (IS_MR_CHANNEL(channel)) base = channel * 16; else base = 0x0C80 + ((channel - FREQ_CHANNEL_FIRST) * 32) + (VFO * 16); if (configure == VFO_CONFIGURE_RELOAD || IS_FREQ_CHANNEL(channel)) { uint8_t tmp; uint8_t data[8]; // *************** EEPROM_ReadBuffer(base + 8, data, sizeof(data)); tmp = data[3] & 0x0F; if (tmp > TX_OFFSET_FREQUENCY_DIRECTION_SUB) tmp = 0; pVfo->TX_OFFSET_FREQUENCY_DIRECTION = tmp; tmp = data[3] >> 4; if (tmp >= MODULATION_UKNOWN) tmp = MODULATION_FM; pVfo->Modulation = tmp; tmp = data[6]; if (tmp >= STEP_N_ELEM) tmp = STEP_12_5kHz; pVfo->STEP_SETTING = tmp; pVfo->StepFrequency = gStepFrequencyTable[tmp]; tmp = data[7]; if (tmp > (ARRAY_SIZE(gSubMenu_SCRAMBLER) - 1)) tmp = 0; pVfo->SCRAMBLING_TYPE = tmp; pVfo->freq_config_RX.CodeType = (data[2] >> 0) & 0x0F; pVfo->freq_config_TX.CodeType = (data[2] >> 4) & 0x0F; tmp = data[0]; switch (pVfo->freq_config_RX.CodeType) { default: case CODE_TYPE_OFF: pVfo->freq_config_RX.CodeType = CODE_TYPE_OFF; tmp = 0; break; case CODE_TYPE_CONTINUOUS_TONE: if (tmp > (ARRAY_SIZE(CTCSS_Options) - 1)) tmp = 0; break; case CODE_TYPE_DIGITAL: case CODE_TYPE_REVERSE_DIGITAL: if (tmp > (ARRAY_SIZE(DCS_Options) - 1)) tmp = 0; break; } pVfo->freq_config_RX.Code = tmp; tmp = data[1]; switch (pVfo->freq_config_TX.CodeType) { default: case CODE_TYPE_OFF: pVfo->freq_config_TX.CodeType = CODE_TYPE_OFF; tmp = 0; break; case CODE_TYPE_CONTINUOUS_TONE: if (tmp > (ARRAY_SIZE(CTCSS_Options) - 1)) tmp = 0; break; case CODE_TYPE_DIGITAL: case CODE_TYPE_REVERSE_DIGITAL: if (tmp > (ARRAY_SIZE(DCS_Options) - 1)) tmp = 0; break; } pVfo->freq_config_TX.Code = tmp; if (data[4] == 0xFF) { pVfo->FrequencyReverse = false; pVfo->CHANNEL_BANDWIDTH = BK4819_FILTER_BW_WIDE; pVfo->OUTPUT_POWER = OUTPUT_POWER_LOW; pVfo->BUSY_CHANNEL_LOCK = false; } else { const uint8_t d4 = data[4]; pVfo->FrequencyReverse = !!((d4 >> 0) & 1u); pVfo->CHANNEL_BANDWIDTH = !!((d4 >> 1) & 1u); pVfo->OUTPUT_POWER = ((d4 >> 2) & 3u); pVfo->BUSY_CHANNEL_LOCK = !!((d4 >> 4) & 1u); } if (data[5] == 0xFF) { #ifdef ENABLE_DTMF_CALLING pVfo->DTMF_DECODING_ENABLE = false; #endif pVfo->DTMF_PTT_ID_TX_MODE = PTT_ID_OFF; } else { #ifdef ENABLE_DTMF_CALLING pVfo->DTMF_DECODING_ENABLE = ((data[5] >> 0) & 1u) ? true : false; #endif pVfo->DTMF_PTT_ID_TX_MODE = ((data[5] >> 1) & 7u); } // *************** struct { uint32_t Frequency; uint32_t Offset; } __attribute__((packed)) info; EEPROM_ReadBuffer(base, &info, sizeof(info)); if(info.Frequency==0xFFFFFFFF) pVfo->freq_config_RX.Frequency = frequencyBandTable[band].lower; else pVfo->freq_config_RX.Frequency = info.Frequency; if (info.Offset >= _1GHz_in_KHz) info.Offset = _1GHz_in_KHz / 100; pVfo->TX_OFFSET_FREQUENCY = info.Offset; // *************** } uint32_t frequency = pVfo->freq_config_RX.Frequency; // fix previously set incorrect band band = FREQUENCY_GetBand(frequency); if (frequency < frequencyBandTable[band].lower) frequency = frequencyBandTable[band].lower; else if (frequency > frequencyBandTable[band].upper) frequency = frequencyBandTable[band].upper; else if (channel >= FREQ_CHANNEL_FIRST) frequency = FREQUENCY_RoundToStep(frequency, pVfo->StepFrequency); pVfo->freq_config_RX.Frequency = frequency; if (frequency >= frequencyBandTable[BAND2_108MHz].upper && frequency < frequencyBandTable[BAND2_108MHz].upper) pVfo->TX_OFFSET_FREQUENCY_DIRECTION = TX_OFFSET_FREQUENCY_DIRECTION_OFF; else if (!IS_MR_CHANNEL(channel)) pVfo->TX_OFFSET_FREQUENCY = FREQUENCY_RoundToStep(pVfo->TX_OFFSET_FREQUENCY, pVfo->StepFrequency); RADIO_ApplyOffset(pVfo); if (IS_MR_CHANNEL(channel)) { // 16 bytes allocated to the channel name but only 10 used, the rest are 0's SETTINGS_FetchChannelName(pVfo->Name, channel); } if (!pVfo->FrequencyReverse) { pVfo->pRX = &pVfo->freq_config_RX; pVfo->pTX = &pVfo->freq_config_TX; } else { pVfo->pRX = &pVfo->freq_config_TX; pVfo->pTX = &pVfo->freq_config_RX; } // if (!gSetting_350EN) // { // FREQ_Config_t *pConfig = pVfo->pRX; // if (pConfig->Frequency >= 35000000 && pConfig->Frequency < 40000000) // pConfig->Frequency = 43300000; // } // else{ // // FREQ_Config_t *pConfig = gEeprom.VfoInfo[1].pRX; // unsigned int code_type = pConfig->CodeType; // // // pVfo->freq_config_RX.CodeType= code_type; // pVfo->freq_config_TX.CodeType= code_type; // // } pVfo->Compander = att.compander; RADIO_ConfigureSquelchAndOutputPower(pVfo); } void RADIO_ConfigureSquelchAndOutputPower(VFO_Info_t *pInfo) { // ******************************* // squelch FREQUENCY_Band_t Band = FREQUENCY_GetBand(pInfo->pRX->Frequency); uint16_t Base = (Band < BAND4_174MHz) ? 0x1E60 : 0x1E00; if (gEeprom.SQUELCH_LEVEL == 0) { // squelch == 0 (off) pInfo->SquelchOpenRSSIThresh = 0; // 0 ~ 255 pInfo->SquelchOpenNoiseThresh = 127; // 127 ~ 0 pInfo->SquelchCloseGlitchThresh = 255; // 255 ~ 0 pInfo->SquelchCloseRSSIThresh = 0; // 0 ~ 255 pInfo->SquelchCloseNoiseThresh = 127; // 127 ~ 0 pInfo->SquelchOpenGlitchThresh = 255; // 255 ~ 0 } else { // squelch >= 1 Base += gEeprom.SQUELCH_LEVEL; // my eeprom squelch-1 // VHF UHF EEPROM_ReadBuffer(Base + 0x00, &pInfo->SquelchOpenRSSIThresh, 1); // 50 10 EEPROM_ReadBuffer(Base + 0x10, &pInfo->SquelchCloseRSSIThresh, 1); // 40 5 EEPROM_ReadBuffer(Base + 0x20, &pInfo->SquelchOpenNoiseThresh, 1); // 65 90 EEPROM_ReadBuffer(Base + 0x30, &pInfo->SquelchCloseNoiseThresh, 1); // 70 100 EEPROM_ReadBuffer(Base + 0x40, &pInfo->SquelchCloseGlitchThresh, 1); // 90 90 EEPROM_ReadBuffer(Base + 0x50, &pInfo->SquelchOpenGlitchThresh, 1); // 100 100 uint16_t rssi_open = pInfo->SquelchOpenRSSIThresh; uint16_t rssi_close = pInfo->SquelchCloseRSSIThresh; uint16_t noise_open = pInfo->SquelchOpenNoiseThresh; uint16_t noise_close = pInfo->SquelchCloseNoiseThresh; uint16_t glitch_open = pInfo->SquelchOpenGlitchThresh; uint16_t glitch_close = pInfo->SquelchCloseGlitchThresh; #if ENABLE_SQUELCH_MORE_SENSITIVE // make squelch a little more sensitive // // getting the best setting here is still experimental, bare with me // // note that 'noise' and 'glitch' values are inverted compared to 'rssi' values #if 0 rssi_open = (rssi_open * 8) / 9; noise_open = (noise_open * 9) / 8; glitch_open = (glitch_open * 9) / 8; #else // even more sensitive .. use when RX bandwidths are fixed (no weak signal auto adjust) rssi_open = (rssi_open * 1) / 2; noise_open = (noise_open * 2) / 1; glitch_open = (glitch_open * 2) / 1; #endif #else // more sensitive .. use when RX bandwidths are fixed (no weak signal auto adjust) rssi_open = (rssi_open * 3) / 4; noise_open = (noise_open * 4) / 3; glitch_open = (glitch_open * 4) / 3; #endif rssi_close = (rssi_open * 9) / 10; noise_close = (noise_open * 10) / 9; glitch_close = (glitch_open * 10) / 9; // ensure the 'close' threshold is lower than the 'open' threshold if (rssi_close == rssi_open && rssi_close >= 2) rssi_close -= 2; if (noise_close == noise_open && noise_close <= 125) noise_close += 2; if (glitch_close == glitch_open && glitch_close <= 253) glitch_close += 2; pInfo->SquelchOpenRSSIThresh = (rssi_open > 255) ? 255 : rssi_open; pInfo->SquelchCloseRSSIThresh = (rssi_close > 255) ? 255 : rssi_close; pInfo->SquelchOpenNoiseThresh = (noise_open > 127) ? 127 : noise_open; pInfo->SquelchCloseNoiseThresh = (noise_close > 127) ? 127 : noise_close; pInfo->SquelchOpenGlitchThresh = (glitch_open > 255) ? 255 : glitch_open; pInfo->SquelchCloseGlitchThresh = (glitch_close > 255) ? 255 : glitch_close; } // ******************************* // output power Band = FREQUENCY_GetBand(pInfo->pTX->Frequency); uint8_t Txp[3]; EEPROM_ReadBuffer(0x1ED0 + (Band * 16) + (pInfo->OUTPUT_POWER * 3), Txp, 3); #ifdef ENABLE_REDUCE_LOW_MID_TX_POWER // make low and mid even lower if (pInfo->OUTPUT_POWER == OUTPUT_POWER_LOW) { Txp[0] /= 5; Txp[1] /= 5; Txp[2] /= 5; } else if (pInfo->OUTPUT_POWER == OUTPUT_POWER_MID){ Txp[0] /= 3; Txp[1] /= 3; Txp[2] /= 3; } #endif pInfo->TXP_CalculatedSetting = FREQUENCY_CalculateOutputPower( Txp[0], Txp[1], Txp[2], frequencyBandTable[Band].lower, (frequencyBandTable[Band].lower + frequencyBandTable[Band].upper) / 2, frequencyBandTable[Band].upper, pInfo->pTX->Frequency); // ******************************* } void RADIO_ApplyOffset(VFO_Info_t *pInfo) { uint32_t Frequency = pInfo->freq_config_RX.Frequency; switch (pInfo->TX_OFFSET_FREQUENCY_DIRECTION) { case TX_OFFSET_FREQUENCY_DIRECTION_OFF: break; case TX_OFFSET_FREQUENCY_DIRECTION_ADD: Frequency += pInfo->TX_OFFSET_FREQUENCY; break; case TX_OFFSET_FREQUENCY_DIRECTION_SUB: Frequency -= pInfo->TX_OFFSET_FREQUENCY; break; } if (Frequency < frequencyBandTable[0].lower) Frequency = frequencyBandTable[0].lower; else if (Frequency > frequencyBandTable[BAND_N_ELEM - 1].upper) Frequency = frequencyBandTable[BAND_N_ELEM - 1].upper; pInfo->freq_config_TX.Frequency = Frequency; } static void RADIO_SelectCurrentVfo(void) { // if crossband is active and DW not the gCurrentVfo is gTxVfo (gTxVfo/TX_VFO is only ever changed by the user) // otherwise it is set to gRxVfo which is set to gTxVfo in RADIO_SelectVfos // so in the end gCurrentVfo is equal to gTxVfo unless dual watch changes it on incomming transmition (again, this can only happen when XB off) // note: it is called only in certain situations so could be not up-to-date gCurrentVfo = (gEeprom.CROSS_BAND_RX_TX == CROSS_BAND_OFF || gEeprom.DUAL_WATCH != DUAL_WATCH_OFF) ? gRxVfo : gTxVfo; } void RADIO_SelectVfos(void) { // if crossband without DW is used then RX_VFO is the opposite to the TX_VFO gEeprom.RX_VFO = (gEeprom.CROSS_BAND_RX_TX == CROSS_BAND_OFF || gEeprom.DUAL_WATCH != DUAL_WATCH_OFF) ? gEeprom.TX_VFO : !gEeprom.TX_VFO; gTxVfo = &gEeprom.VfoInfo[gEeprom.TX_VFO]; gRxVfo = &gEeprom.VfoInfo[gEeprom.RX_VFO]; RADIO_SelectCurrentVfo(); } void RADIO_SetupRegisters(bool switchToForeground) { BK4819_FilterBandwidth_t Bandwidth = gRxVfo->CHANNEL_BANDWIDTH; uint16_t InterruptMask; uint32_t Frequency; AUDIO_AudioPathOff(); gEnableSpeaker = false; BK4819_ToggleGpioOut(BK4819_GPIO6_PIN2_GREEN, false); switch (Bandwidth) { default: Bandwidth = BK4819_FILTER_BW_WIDE; [[fallthrough]]; case BK4819_FILTER_BW_WIDE: case BK4819_FILTER_BW_NARROW: #ifdef ENABLE_AM_FIX // BK4819_SetFilterBandwidth(Bandwidth, gRxVfo->Modulation == MODULATION_AM && gSetting_AM_fix); BK4819_SetFilterBandwidth(Bandwidth, true); #else BK4819_SetFilterBandwidth(Bandwidth, false); #endif break; } BK4819_ToggleGpioOut(BK4819_GPIO5_PIN1_RED, false); BK4819_SetupPowerAmplifier(0, 0); BK4819_ToggleGpioOut(BK4819_GPIO1_PIN29_PA_ENABLE, false); while (1) { const uint16_t Status = BK4819_ReadRegister(BK4819_REG_0C); if ((Status & 1u) == 0) // INTERRUPT REQUEST break; BK4819_WriteRegister(BK4819_REG_02, 0); SYSTEM_DelayMs(1); } BK4819_WriteRegister(BK4819_REG_3F, 0); // mic gain 0.5dB/step 0 to 31 BK4819_WriteRegister(BK4819_REG_7D, 0xE940 | (gEeprom.MIC_SENSITIVITY_TUNING & 0x1f)); #ifdef ENABLE_NOAA if (!IS_NOAA_CHANNEL(gRxVfo->CHANNEL_SAVE) || !gIsNoaaMode) Frequency = gRxVfo->pRX->Frequency; else Frequency = NoaaFrequencyTable[gNoaaChannel]; #else Frequency = gRxVfo->pRX->Frequency; #endif BK4819_SetFrequency(Frequency); BK4819_SetupSquelch( gRxVfo->SquelchOpenRSSIThresh, gRxVfo->SquelchCloseRSSIThresh, gRxVfo->SquelchOpenNoiseThresh, gRxVfo->SquelchCloseNoiseThresh, gRxVfo->SquelchCloseGlitchThresh, gRxVfo->SquelchOpenGlitchThresh); BK4819_PickRXFilterPathBasedOnFrequency(Frequency); // what does this in do ? BK4819_ToggleGpioOut(BK4819_GPIO0_PIN28_RX_ENABLE, true); // AF RX Gain and DAC //BK4819_WriteRegister(BK4819_REG_48, 0xB3A8); // 1011 00 111010 1000 BK4819_WriteRegister(BK4819_REG_48, (11u << 12) | // ??? .. 0 ~ 15, doesn't seem to make any difference ( 0u << 10) | // AF Rx Gain-1 (gEeprom.VOLUME_GAIN << 4) | // AF Rx Gain-2 (gEeprom.DAC_GAIN << 0)); // AF DAC Gain (after Gain-1 and Gain-2) InterruptMask = BK4819_REG_3F_SQUELCH_FOUND | BK4819_REG_3F_SQUELCH_LOST; #ifdef ENABLE_NOAA if (!IS_NOAA_CHANNEL(gRxVfo->CHANNEL_SAVE)) #endif { if (gRxVfo->Modulation == MODULATION_FM) { // FM uint8_t CodeType = gRxVfo->pRX->CodeType; uint8_t Code = gRxVfo->pRX->Code; switch (CodeType) { default: case CODE_TYPE_OFF: BK4819_SetCTCSSFrequency(670); //#ifndef ENABLE_CTCSS_TAIL_PHASE_SHIFT BK4819_SetTailDetection(550); // QS's 55Hz tone method //#else // BK4819_SetTailDetection(670); // 67Hz //#endif InterruptMask = BK4819_REG_3F_CxCSS_TAIL | BK4819_REG_3F_SQUELCH_FOUND | BK4819_REG_3F_SQUELCH_LOST; break; case CODE_TYPE_CONTINUOUS_TONE: BK4819_SetCTCSSFrequency(CTCSS_Options[Code]); //#ifndef ENABLE_CTCSS_TAIL_PHASE_SHIFT BK4819_SetTailDetection(550); // QS's 55Hz tone method //#else // BK4819_SetTailDetection(CTCSS_Options[Code]); //#endif InterruptMask = 0 | BK4819_REG_3F_CxCSS_TAIL | BK4819_REG_3F_CTCSS_FOUND | BK4819_REG_3F_CTCSS_LOST | BK4819_REG_3F_SQUELCH_FOUND | BK4819_REG_3F_SQUELCH_LOST; break; case CODE_TYPE_DIGITAL: case CODE_TYPE_REVERSE_DIGITAL: BK4819_SetCDCSSCodeWord(DCS_GetGolayCodeWord(CodeType, Code)); InterruptMask = 0 | BK4819_REG_3F_CxCSS_TAIL | BK4819_REG_3F_CDCSS_FOUND | BK4819_REG_3F_CDCSS_LOST | BK4819_REG_3F_SQUELCH_FOUND | BK4819_REG_3F_SQUELCH_LOST; break; } if (gRxVfo->SCRAMBLING_TYPE > 0 && gSetting_ScrambleEnable) BK4819_EnableScramble(gRxVfo->SCRAMBLING_TYPE - 1); else BK4819_DisableScramble(); } } #ifdef ENABLE_NOAA else { BK4819_SetCTCSSFrequency(2625); InterruptMask = 0 | BK4819_REG_3F_CTCSS_FOUND | BK4819_REG_3F_CTCSS_LOST | BK4819_REG_3F_SQUELCH_FOUND | BK4819_REG_3F_SQUELCH_LOST; } #endif #ifdef ENABLE_VOX if (gEeprom.VOX_SWITCH && gCurrentVfo->Modulation == MODULATION_FM #ifdef ENABLE_NOAA && !IS_NOAA_CHANNEL(gCurrentVfo->CHANNEL_SAVE) #endif #ifdef ENABLE_FMRADIO && !gFmRadioMode #endif ){ BK4819_EnableVox(gEeprom.VOX1_THRESHOLD, gEeprom.VOX0_THRESHOLD); InterruptMask |= BK4819_REG_3F_VOX_FOUND | BK4819_REG_3F_VOX_LOST; } else #endif { BK4819_DisableVox(); } // RX expander BK4819_SetCompander((gRxVfo->Modulation == MODULATION_FM && gRxVfo->Compander >= 2) ? gRxVfo->Compander : 0); #if 0 if (!gRxVfo->DTMF_DECODING_ENABLE && !gSetting_KILLED) { BK4819_DisableDTMF(); } else { BK4819_EnableDTMF(); InterruptMask |= BK4819_REG_3F_DTMF_5TONE_FOUND; } #else BK4819_DisableDTMF(); if (gCurrentFunction != FUNCTION_TRANSMIT) { BK4819_EnableDTMF(); InterruptMask |= BK4819_REG_3F_DTMF_5TONE_FOUND; } #endif RADIO_SetupAGC(gRxVfo->Modulation == MODULATION_AM, false); // enable/disable BK4819 selected interrupts #ifdef ENABLE_MDC1200 BK4819_enable_mdc1200_rx(true); InterruptMask |= BK4819_REG_3F_FSK_RX_SYNC | BK4819_REG_3F_FSK_RX_FINISHED | BK4819_REG_3F_FSK_FIFO_ALMOST_FULL; #endif BK4819_WriteRegister(BK4819_REG_3F, InterruptMask); FUNCTION_Init(); if (switchToForeground) FUNCTION_Select(FUNCTION_FOREGROUND); } #ifdef ENABLE_NOAA void RADIO_ConfigureNOAA(void) { uint8_t ChanAB; gUpdateStatus = true; if (gEeprom.NOAA_AUTO_SCAN) { if (gEeprom.DUAL_WATCH != DUAL_WATCH_OFF) { if (!IS_NOAA_CHANNEL(gEeprom.ScreenChannel[0])) { if (!IS_NOAA_CHANNEL(gEeprom.ScreenChannel[1])) { gIsNoaaMode = false; return; } ChanAB = 1; } else ChanAB = 0; if (!gIsNoaaMode) gNoaaChannel = gEeprom.VfoInfo[ChanAB].CHANNEL_SAVE - NOAA_CHANNEL_FIRST; gIsNoaaMode = true; return; } if (gRxVfo->CHANNEL_SAVE >= NOAA_CHANNEL_FIRST) { gIsNoaaMode = true; gNoaaChannel = gRxVfo->CHANNEL_SAVE - NOAA_CHANNEL_FIRST; gNOAA_Countdown_10ms = NOAA_countdown_2_10ms; gScheduleNOAA = false; } else gIsNoaaMode = false; } else gIsNoaaMode = false; } #endif void RADIO_SetTxParameters(void) { BK4819_FilterBandwidth_t Bandwidth = gCurrentVfo->CHANNEL_BANDWIDTH; AUDIO_AudioPathOff(); gEnableSpeaker = false; BK4819_ToggleGpioOut(BK4819_GPIO0_PIN28_RX_ENABLE, false); switch (Bandwidth) { default: Bandwidth = BK4819_FILTER_BW_WIDE; [[fallthrough]]; case BK4819_FILTER_BW_WIDE: case BK4819_FILTER_BW_NARROW: #ifdef ENABLE_AM_FIX // BK4819_SetFilterBandwidth(Bandwidth, gCurrentVfo->Modulation == MODULATION_AM && gSetting_AM_fix); BK4819_SetFilterBandwidth(Bandwidth, true); #else BK4819_SetFilterBandwidth(Bandwidth, false); #endif break; } BK4819_SetFrequency(gCurrentVfo->pTX->Frequency); // TX compressor BK4819_SetCompander((gRxVfo->Modulation == MODULATION_FM && (gRxVfo->Compander == 1 || gRxVfo->Compander >= 3)) ? gRxVfo->Compander : 0); BK4819_PrepareTransmit(); SYSTEM_DelayMs(10); BK4819_PickRXFilterPathBasedOnFrequency(gCurrentVfo->pTX->Frequency); BK4819_ToggleGpioOut(BK4819_GPIO1_PIN29_PA_ENABLE, true); SYSTEM_DelayMs(5); BK4819_SetupPowerAmplifier(gCurrentVfo->TXP_CalculatedSetting, gCurrentVfo->pTX->Frequency); SYSTEM_DelayMs(10); switch (gCurrentVfo->pTX->CodeType) { default: case CODE_TYPE_OFF: BK4819_ExitSubAu(); break; case CODE_TYPE_CONTINUOUS_TONE: BK4819_SetCTCSSFrequency(CTCSS_Options[gCurrentVfo->pTX->Code]); break; case CODE_TYPE_DIGITAL: case CODE_TYPE_REVERSE_DIGITAL: BK4819_SetCDCSSCodeWord(DCS_GetGolayCodeWord(gCurrentVfo->pTX->CodeType, gCurrentVfo->pTX->Code)); break; } } void RADIO_SetModulation(ModulationMode_t modulation) { BK4819_AF_Type_t mod; switch(modulation) { default: case MODULATION_FM: mod = BK4819_AF_FM; break; case MODULATION_AM: mod = BK4819_AF_AM; break; case MODULATION_USB: mod = BK4819_AF_BASEBAND2; break; #ifdef ENABLE_BYP_RAW_DEMODULATORS case MODULATION_BYP: mod = BK4819_AF_UNKNOWN3; break; case MODULATION_RAW: mod = BK4819_AF_BASEBAND1; break; #endif } BK4819_SetAF(mod); BK4819_SetRegValue(afDacGainRegSpec, 0xF); BK4819_WriteRegister(BK4819_REG_3D, modulation == MODULATION_USB ? 0 : 0x2AAB); BK4819_SetRegValue(afcDisableRegSpec, modulation != MODULATION_FM); RADIO_SetupAGC(modulation == MODULATION_AM, false); } void RADIO_SetupAGC(bool listeningAM, bool disable) { static uint8_t lastSettings; uint8_t newSettings = (listeningAM << 1) | (disable << 1); if(lastSettings == newSettings) return; lastSettings = newSettings; if(!listeningAM) { // if not actively listening AM we don't need any AM specific regulation BK4819_SetAGC(!disable); BK4819_InitAGC(false); } else { #ifdef ENABLE_AM_FIX if(gSetting_AM_fix) { // if AM fix active lock AGC so AM-fix can do it's job BK4819_SetAGC(0); AM_fix_enable(!disable); } else #endif { BK4819_SetAGC(!disable); BK4819_InitAGC(true); } } } void RADIO_SetVfoState(VfoState_t State) { if (State == VFO_STATE_NORMAL) { VfoState[0] = VFO_STATE_NORMAL; VfoState[1] = VFO_STATE_NORMAL; } else if (State == VFO_STATE_VOLTAGE_HIGH) { VfoState[0] = VFO_STATE_VOLTAGE_HIGH; VfoState[1] = VFO_STATE_TX_DISABLE; } else { // 1of11 const unsigned int vfo = (gEeprom.CROSS_BAND_RX_TX == CROSS_BAND_OFF) ? gEeprom.RX_VFO : gEeprom.TX_VFO; VfoState[vfo] = State; } gVFOStateResumeCountdown_500ms = (State == VFO_STATE_NORMAL) ? 0 : vfo_state_resume_countdown_500ms; gUpdateDisplay = true; } void RADIO_PrepareTX(void) { VfoState_t State = VFO_STATE_NORMAL; // default to OK to TX if (gEeprom.DUAL_WATCH != DUAL_WATCH_OFF) { // dual-RX is enabled gDualWatchCountdown_10ms = dual_watch_count_after_tx_10ms; gScheduleDualWatch = false; if (!gRxVfoIsActive) { // use the current RX vfo gEeprom.RX_VFO = gEeprom.TX_VFO; gRxVfo = gTxVfo; gRxVfoIsActive = true; } // let the user see that DW is not active gDualWatchActive = false; gUpdateStatus = true; } RADIO_SelectCurrentVfo(); if(TX_freq_check(gCurrentVfo->pTX->Frequency) != 0 #if defined(ENABLE_ALARM) || defined(ENABLE_TX1750) && gAlarmState != ALARM_STATE_SITE_ALARM #endif ) { // TX frequency not allowed State = VFO_STATE_TX_DISABLE; } else if ( SerialConfigInProgress()) { // TX is disabled or config upload/download in progress State = VFO_STATE_TX_DISABLE; } else if (gCurrentVfo->BUSY_CHANNEL_LOCK && gCurrentFunction == FUNCTION_RECEIVE) { // busy RX'ing a station State = VFO_STATE_BUSY; } else if (gBatteryDisplayLevel == 0) { // charge your battery !git co State = VFO_STATE_BAT_LOW; } else if (gBatteryDisplayLevel > 6) { // over voltage .. this is being a pain State = VFO_STATE_VOLTAGE_HIGH; } #ifndef ENABLE_TX_WHEN_AM else if (gCurrentVfo->Modulation != MODULATION_FM) { // not allowed to TX if in AM mode State = VFO_STATE_TX_DISABLE; } #endif if (State != VFO_STATE_NORMAL) { // TX not allowed RADIO_SetVfoState(State); #if defined(ENABLE_ALARM) || defined(ENABLE_TX1750) gAlarmState = ALARM_STATE_OFF; #endif #ifdef ENABLE_DTMF_CALLING gDTMF_ReplyState = DTMF_REPLY_NONE; #endif AUDIO_PlayBeep(BEEP_500HZ_60MS_DOUBLE_BEEP_OPTIONAL); return; } // TX is allowed #ifdef ENABLE_DTMF_CALLING if (gDTMF_ReplyState == DTMF_REPLY_ANI) { gDTMF_IsTx = gDTMF_CallMode == DTMF_CALL_MODE_DTMF; if (gDTMF_IsTx) { gDTMF_CallState = DTMF_CALL_STATE_NONE; gDTMF_TxStopCountdown_500ms = DTMF_txstop_countdown_500ms; } else { gDTMF_CallState = DTMF_CALL_STATE_CALL_OUT; } } #endif FUNCTION_Select(FUNCTION_TRANSMIT); gTxTimerCountdown_500ms = 0; // no timeout #if defined(ENABLE_ALARM) || defined(ENABLE_TX1750) if (gAlarmState == ALARM_STATE_OFF) #endif { if (gEeprom.TX_TIMEOUT_TIMER == 0) gTxTimerCountdown_500ms = 60; // 30 sec else if (gEeprom.TX_TIMEOUT_TIMER < (ARRAY_SIZE(gSubMenu_TOT) - 1)) gTxTimerCountdown_500ms = 120 * gEeprom.TX_TIMEOUT_TIMER; // minutes else gTxTimerCountdown_500ms = 120 * 15; // 15 minutes } gTxTimeoutReached = false; gFlagEndTransmission = false; gRTTECountdown = 0; #ifdef ENABLE_DTMF_CALLING gDTMF_ReplyState = DTMF_REPLY_NONE; #endif } void RADIO_EnableCxCSS(void) { switch (gCurrentVfo->pTX->CodeType) { case CODE_TYPE_DIGITAL: case CODE_TYPE_REVERSE_DIGITAL: BK4819_EnableCDCSS(); break; default: BK4819_EnableCTCSS(); break; } SYSTEM_DelayMs(200); } void RADIO_PrepareCssTX(void) { RADIO_PrepareTX(); SYSTEM_DelayMs(200); RADIO_EnableCxCSS(); RADIO_SetupRegisters(true); } void RADIO_SendEndOfTransmission(void) { if (gEeprom.ROGER == ROGER_MODE_ROGER||gEeprom.ROGER==ROGER_MODE_MDC_HEAD_ROGER) BK4819_PlayRoger(); else if (gEeprom.ROGER == ROGER_MODE_MDC_END||gEeprom.ROGER==ROGER_MODE_MDC_BOTH) { BK4819_send_MDC1200(MDC1200_OP_CODE_POST_ID, 0x00, gEeprom.MDC1200_ID, false); #ifdef ENABLE_MDC1200_SIDE_BEEP BK4819_start_tone(880, 10, true, true); SYSTEM_DelayMs(120); BK4819_stop_tones(true); #endif } if (gCurrentVfo->DTMF_PTT_ID_TX_MODE == PTT_ID_APOLLO) { BK4819_PlaySingleTone(2475, 250, 28, gEeprom.DTMF_SIDE_TONE); } if ((gCurrentVfo->DTMF_PTT_ID_TX_MODE == PTT_ID_TX_DOWN || gCurrentVfo->DTMF_PTT_ID_TX_MODE == PTT_ID_BOTH) #ifdef ENABLE_DTMF_CALLING && gDTMF_CallState == DTMF_CALL_STATE_NONE #endif ) { // end-of-tx if (gEeprom.DTMF_SIDE_TONE) { AUDIO_AudioPathOn(); gEnableSpeaker = true; SYSTEM_DelayMs(60); } BK4819_EnterDTMF_TX(gEeprom.DTMF_SIDE_TONE); BK4819_PlayDTMFString( gEeprom.DTMF_DOWN_CODE, 0, gEeprom.DTMF_FIRST_CODE_PERSIST_TIME, gEeprom.DTMF_HASH_CODE_PERSIST_TIME, gEeprom.DTMF_CODE_PERSIST_TIME, gEeprom.DTMF_CODE_INTERVAL_TIME); AUDIO_AudioPathOff(); gEnableSpeaker = false; } BK4819_ExitDTMF_TX(true); }