#include "driver/bk4819.h" #include "driver/crc.h" #include "driver/uart.h" #include "mdc1200.h" #include "misc.h" #include #include "driver/eeprom.h" uint16_t MDC_ID = 0X542B; const uint8_t mdc1200_pre_amble[] = {0x00, 0x00, 0x00}; const uint8_t mdc1200_sync[5] = {0x07, 0x09, 0x2a, 0x44, 0x6f}; uint8_t mdc1200_sync_suc_xor[sizeof(mdc1200_sync)]; #if 1 uint16_t compute_crc(const void *data, const unsigned int data_len) { // let the CPU's hardware do some work :) uint16_t crc; CRC_InitReverse(); crc = CRC_Calculate(data, data_len); CRC_Init(); return crc; } #elif 1 uint16_t compute_crc( void *data, const unsigned int data_len) { // let the CPU's hardware do some work :) return CRC_Calculate(data, data_len); } //uint16_t compute_crc( void *data, const unsigned int data_len) // { // using the reverse computation and polynominal avoids having to reverse the bit order during and after // unsigned int i; // uint8_t *data8 = ( uint8_t *)data; // uint16_t crc = 0; // for (i = 0; i < data_len; i++) // { // unsigned int k; // crc ^= data8[i]; // for (k = 8; k > 0; k--) // crc = (crc & 1u) ? (crc >> 1) ^ 0x8408 : crc >> 1; // } // return crc ^ 0xffff; // } #else uint16_t compute_crc(const void *data, const unsigned int data_len) { unsigned int i; const uint8_t *data8 = (const uint8_t *)data; uint16_t crc = 0; for (i = 0; i < data_len; i++) { uint8_t mask; // bit reverse each data byte const uint8_t bits = bit_reverse_8(*data8++); for (mask = 0x0080; mask != 0; mask >>= 1) { uint16_t msb = crc & 0x8000; if (bits & mask) msb ^= 0x8000; crc <<= 1; if (msb) crc ^= 0x1021; } } // bit reverse and invert the final CRC return bit_reverse_16(crc) ^ 0xffff; } #endif void error_correction(void *data) { // can correct up to 3 or 4 corrupted bits (I think) int i; uint8_t shift_reg; uint8_t syn; uint8_t *data8 = (uint8_t *) data; for (i = 0, shift_reg = 0, syn = 0; i < MDC1200_FEC_K; i++) { const uint8_t bi = data8[i]; int bit_num; for (bit_num = 0; bit_num < 8; bit_num++) { uint8_t b; unsigned int k = 0; shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u); b = ((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u; syn = (syn << 1) | (((b ^ (data8[i + MDC1200_FEC_K] >> bit_num)) & 1u) ? 1u : 0u); if (syn & 0x80) k++; if (syn & 0x20) k++; if (syn & 0x04) k++; if (syn & 0x02) k++; if (k >= 3) { // correct a bit error int ii = i; int bn = bit_num - 7; if (bn < 0) { bn += 8; ii--; } if (ii >= 0) data8[ii] ^= 1u << bn; // fix a bit syn ^= 0xA6; // 10100110 } } } } bool decode_data(void *data) { uint16_t crc1; uint16_t crc2; uint8_t *data8 = (uint8_t *) data; { // de-interleave unsigned int i; unsigned int k; unsigned int m; uint8_t deinterleaved[(MDC1200_FEC_K * 2) * 8]; // temp individual bit storage // interleave order // 0, 16, 32, 48, 64, 80, 96, // 1, 17, 33, 49, 65, 81, 97, // 2, 18, 34, 50, 66, 82, 98, // 3, 19, 35, 51, 67, 83, 99, // 4, 20, 36, 52, 68, 84, 100, // 5, 21, 37, 53, 69, 85, 101, // 6, 22, 38, 54, 70, 86, 102, // 7, 23, 39, 55, 71, 87, 103, // 8, 24, 40, 56, 72, 88, 104, // 9, 25, 41, 57, 73, 89, 105, // 10, 26, 42, 58, 74, 90, 106, // 11, 27, 43, 59, 75, 91, 107, // 12, 28, 44, 60, 76, 92, 108, // 13, 29, 45, 61, 77, 93, 109, // 14, 30, 46, 62, 78, 94, 110, // 15, 31, 47, 63, 79, 95, 111 // de-interleave the received bits for (i = 0, k = 0; i < 16; i++) { for (m = 0; m < MDC1200_FEC_K; m++) { const unsigned int n = (m * 16) + i; deinterleaved[k++] = (data8[n >> 3] >> ((7 - n) & 7u)) & 1u; } } // copy the de-interleaved bits back into the data buffer for (i = 0, m = 0; i < (MDC1200_FEC_K * 2); i++) { unsigned int k; uint8_t b = 0; for (k = 0; k < 8; k++) if (deinterleaved[m++]) b |= 1u << k; data8[i] = b; } } // try to correct the odd corrupted bit error_correction(data); // rx'ed de-interleaved data (min 14 bytes) looks like this .. // // OP ARG ID CRC STATUS FEC bits // 01 80 1234 2E3E 00 6580A862DD8808 crc1 = compute_crc(data, 4); crc2 = ((uint16_t) data8[5] << 8) | (data8[4] << 0); return (crc1 == crc2) ? true : false; } // ********************************************************** // TX void xor_modulation(void *data, const unsigned int size) { // exclusive-or succesive bits - the entire packet unsigned int i; uint8_t *data8 = (uint8_t *) data; uint8_t prev_bit = 0; for (i = 0; i < size; i++) { int bit_num; uint8_t in = data8[i]; uint8_t out = 0; for (bit_num = 7; bit_num >= 0; bit_num--) { const uint8_t new_bit = (in >> bit_num) & 1u; if (new_bit != prev_bit) out |= 1u << bit_num; // previous bit and new bit are different - send a '1' prev_bit = new_bit; } data8[i] = out ^ 0xff; } } uint8_t *encode_data(void *data) { // R=1/2 K=7 convolutional coder // // OP ARG ID CRC STATUS FEC bits // 01 80 1234 2E3E 00 6580A862DD8808 // // 1. reverse the bit order for each byte of the first 7 bytes (to undo the reversal performed for display, above) // 2. feed those bits into a shift register which is preloaded with all zeros // 3. for each bit, calculate the modulo-2 sum: bit(n-0) + bit(n-2) + bit(n-5) + bit(n-6) // 4. then for each byte of resulting output, again reverse those bits to generate the values shown above uint8_t *data8 = (uint8_t *) data; { // add the FEC bits to the end of the data unsigned int i; uint8_t shift_reg = 0; for (i = 0; i < MDC1200_FEC_K; i++) { unsigned int bit_num; const uint8_t bi = data8[i]; uint8_t bo = 0; for (bit_num = 0; bit_num < 8; bit_num++) { shift_reg = (shift_reg << 1) | ((bi >> bit_num) & 1u); bo |= (((shift_reg >> 6) ^ (shift_reg >> 5) ^ (shift_reg >> 2) ^ (shift_reg >> 0)) & 1u) << bit_num; } data8[MDC1200_FEC_K + i] = bo; } } { // interleave the bits unsigned int i; unsigned int k; uint8_t interleaved[(MDC1200_FEC_K * 2) * 8]; // temp individual bit storage // interleave order // 0, 16, 32, 48, 64, 80, 96, // 1, 17, 33, 49, 65, 81, 97, // 2, 18, 34, 50, 66, 82, 98, // 3, 19, 35, 51, 67, 83, 99, // 4, 20, 36, 52, 68, 84, 100, // 5, 21, 37, 53, 69, 85, 101, // 6, 22, 38, 54, 70, 86, 102, // 7, 23, 39, 55, 71, 87, 103, // 8, 24, 40, 56, 72, 88, 104, // 9, 25, 41, 57, 73, 89, 105, // 10, 26, 42, 58, 74, 90, 106, // 11, 27, 43, 59, 75, 91, 107, // 12, 28, 44, 60, 76, 92, 108, // 13, 29, 45, 61, 77, 93, 109, // 14, 30, 46, 62, 78, 94, 110, // 15, 31, 47, 63, 79, 95, 111 // bit interleaver for (i = 0, k = 0; i < (MDC1200_FEC_K * 2); i++) { unsigned int bit_num; const uint8_t b = data8[i]; for (bit_num = 0; bit_num < 8; bit_num++) { interleaved[k] = (b >> bit_num) & 1u; k += 16; if (k >= sizeof(interleaved)) k -= sizeof(interleaved) - 1; } } // copy the interleaved bits back to the data buffer for (i = 0, k = 0; i < (MDC1200_FEC_K * 2); i++) { int bit_num; uint8_t b = 0; for (bit_num = 7; bit_num >= 0; bit_num--) if (interleaved[k++]) b |= 1u << bit_num; data8[i] = b; } } return data8 + (MDC1200_FEC_K * 2); } unsigned int MDC1200_encode_single_packet(void *data, const uint8_t op, const uint8_t arg, const uint16_t unit_id) { unsigned int size; uint16_t crc; uint8_t *p = (uint8_t *) data; memcpy(p, mdc1200_pre_amble, sizeof(mdc1200_pre_amble)); p += sizeof(mdc1200_pre_amble); memcpy(p, mdc1200_sync, sizeof(mdc1200_sync)); p += sizeof(mdc1200_sync); p[0] = op; p[1] = arg; p[2] = (unit_id >> 8) & 0x00ff; p[3] = (unit_id >> 0) & 0x00ff; crc = compute_crc(p, 4); p[4] = (crc >> 0) & 0x00ff; p[5] = (crc >> 8) & 0x00ff; p[6] = 0; // unknown field (00 for PTTIDs, 76 for STS and MSG) p = encode_data(p); size = (unsigned int) (p - (uint8_t *) data); xor_modulation(data, size); return size; } struct { uint8_t bit; uint8_t prev_bit; uint8_t xor_bit; uint64_t shift_reg; unsigned int bit_count; unsigned int stage; bool inverted_sync; unsigned int data_index; uint8_t data[40]; } rx; void MDC1200_reset_rx(void) { memset(&rx, 0, sizeof(rx)); } bool MDC1200_process_rx_data( const void *buffer, const unsigned int size, //const bool inverted, uint8_t *op, uint8_t *arg, uint16_t *unit_id) { const uint8_t *buffer8 = (const uint8_t *) buffer; unsigned int index; // 04 8D BF 66 58 sync // FB 72 40 99 A7 inverted sync // // 04 8D BF 66 58 40 C4 B0 32 BA F9 33 18 35 08 83 F6 0C 36 .. 80 87 20 23 2C AE 22 10 26 0F 02 A4 08 24 // 04 8D BF 66 58 45 DB 03 07 BC FA 35 2E 33 0E 83 0E 83 69 .. 86 92 02 05 28 AC 26 34 22 0B 02 0B 02 4E memset(&rx, 0, sizeof(rx)); for (index = 0; index < size; index++) { int bit; const uint8_t rx_byte = buffer8[index]; for (bit = 7; bit >= 0; bit--) { unsigned int i; rx.prev_bit = rx.bit; rx.bit = (rx_byte >> bit) & 1u; rx.xor_bit = (rx.xor_bit ^ rx.bit) & 1u; // toggle our bit if the rx bit is high rx.shift_reg = (rx.shift_reg << 1) | rx.xor_bit; rx.bit_count++; // ********* if (rx.stage == 0) { // looking for the 40-bit sync pattern const unsigned int sync_bit_ok_threshold = 32; if (rx.bit_count >= 40) { // 40-bit sync pattern uint64_t sync_nor = 0x07092a446fu; // normal uint64_t sync_inv = 0xffffffffffu ^ sync_nor; // bit inverted sync_nor ^= rx.shift_reg; sync_inv ^= rx.shift_reg; unsigned int nor_count = 0; unsigned int inv_count = 0; for (i = 40; i > 0; i--, sync_nor >>= 1, sync_inv >>= 1) { nor_count += sync_nor & 1u; inv_count += sync_inv & 1u; } nor_count = 40 - nor_count; inv_count = 40 - inv_count; if (nor_count >= sync_bit_ok_threshold || inv_count >= sync_bit_ok_threshold) { // good enough rx.inverted_sync = (inv_count > nor_count) ? true : false; rx.data_index = 0; rx.bit_count = 0; rx.stage = 1; } } continue; } if (rx.bit_count < 8) continue; rx.bit_count = 0; rx.data[rx.data_index++] = rx.shift_reg & 0xff; // save the last 8 bits if (rx.data_index < (MDC1200_FEC_K * 2)) continue; if (!decode_data(rx.data)) { MDC1200_reset_rx(); continue; } // extract the info from the packet *op = rx.data[0]; *arg = rx.data[1]; *unit_id = ((uint16_t) rx.data[2] << 8) | (rx.data[3] << 0); // reset the detector MDC1200_reset_rx(); return true; } } MDC1200_reset_rx(); return false; } uint8_t mdc1200_rx_buffer[sizeof(mdc1200_sync_suc_xor) + (MDC1200_FEC_K * 2)]; unsigned int mdc1200_rx_buffer_index = 0; uint8_t mdc1200_op; uint8_t mdc1200_arg; uint16_t mdc1200_unit_id; uint8_t mdc1200_rx_ready_tick_500ms; void MDC1200_process_rx(const uint16_t interrupt_bits) { const uint16_t rx_sync_flags = BK4819_ReadRegister(0x0B); const uint16_t fsk_reg59 = BK4819_ReadRegister(0x59) & ~((1u << 15) | (1u << 14) | (1u << 12) | (1u << 11)); const bool rx_sync = (interrupt_bits & BK4819_REG_02_FSK_RX_SYNC) ? true : false; const bool rx_sync_neg = (rx_sync_flags & (1u << 7)) ? true : false; const bool rx_fifo_almost_full = (interrupt_bits & BK4819_REG_02_FSK_FIFO_ALMOST_FULL) ? true : false; const bool rx_finished = (interrupt_bits & BK4819_REG_02_FSK_RX_FINISHED) ? true : false; if (rx_sync) { mdc1200_rx_buffer_index = 0; { unsigned int i; memset(mdc1200_rx_buffer, 0, sizeof(mdc1200_rx_buffer)); for (i = 0; i < sizeof(mdc1200_sync_suc_xor); i++) mdc1200_rx_buffer[mdc1200_rx_buffer_index++] = mdc1200_sync_suc_xor[i] ^ (rx_sync_neg ? 0xFF : 0x00); } } if (rx_fifo_almost_full) { unsigned int i; const unsigned int count = BK4819_ReadRegister(0x5E) & (7u << 0); // almost full threshold // fetch received packet data for (i = 0; i < count; i++) { const uint16_t word = BK4819_ReadRegister(0x5F) ^ (rx_sync_neg ? 0xFFFF : 0x0000); if (mdc1200_rx_buffer_index < sizeof(mdc1200_rx_buffer)) mdc1200_rx_buffer[mdc1200_rx_buffer_index++] = (word >> 0) & 0xff; if (mdc1200_rx_buffer_index < sizeof(mdc1200_rx_buffer)) mdc1200_rx_buffer[mdc1200_rx_buffer_index++] = (word >> 8) & 0xff; } if (mdc1200_rx_buffer_index >= sizeof(mdc1200_rx_buffer)) { BK4819_WriteRegister(0x59, (1u << 15) | (1u << 14) | fsk_reg59); BK4819_WriteRegister(0x59, (1u << 12) | fsk_reg59); if (MDC1200_process_rx_data( mdc1200_rx_buffer, mdc1200_rx_buffer_index, &mdc1200_op, &mdc1200_arg, &mdc1200_unit_id)) { mdc1200_rx_ready_tick_500ms = 2 * 5; // 6 second MDC display time gUpdateDisplay = true; } mdc1200_rx_buffer_index = 0; } } if (rx_finished) { mdc1200_rx_buffer_index = 0; BK4819_WriteRegister(0x59, (1u << 15) | (1u << 14) | fsk_reg59); BK4819_WriteRegister(0x59, (1u << 12) | fsk_reg59); } } void MDC1200_init(void) { memcpy(mdc1200_sync_suc_xor, mdc1200_sync, sizeof(mdc1200_sync)); xor_modulation(mdc1200_sync_suc_xor, sizeof(mdc1200_sync_suc_xor)); MDC1200_reset_rx(); } uint16_t extractHex(const char *str) { uint16_t result = 0; while (*str) { char c = *str++; if (c >= '0' && c <= '9') { result = (result << 4) | (c - '0'); } else if (c >= 'A' && c <= 'F') { result = (result << 4) | (c - 'A' + 10); } else { continue; // 遇到非十六进制字符,停止解析 } } return result; } uint8_t contact_num=0; uint16_t MDC_ADD[4] = {0x1D48, 0x1D88, 0x1DC8,0x1F08}; void mdc1200_update_contact_num() { EEPROM_ReadBuffer(MDC_NUM_ADD, (uint8_t *)&contact_num, 1); if(contact_num>MAX_CONTACT_NUM)contact_num=0; } bool mdc1200_contact_find(uint16_t mdc_id, char *contact) { mdc1200_update_contact_num(); uint8_t add = 0; for (uint8_t i = 0; i < contact_num; i++) { uint8_t read_once[16]={0}; if ((i & 3) == 0 && i) add++; EEPROM_ReadBuffer(MDC_ADD[add] +((i&3) <<4), read_once, 16); if (mdc_id == (uint16_t) (read_once[1] | (read_once[0] << 8))) { for (int j = 0; j < 14; ++j) { if(read_once[2+j]<' '||read_once[2+j]>'~') return false; } memcpy(contact,read_once+2,14); return true; } } return false; } //uint8_t A[64]; // memset(A,'A',6*16); // for (int i = MDC_ADD1; i < MDC_ADD1+64; ++i) { // EEPROM_WriteBuffer(i,&A[i-MDC_ADD1]); // } // // for (int i = MDC_ADD2+72; i