/* Copyright 2023 Dual Tachyon * https://github.com/DualTachyon * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bsp/dp32g030/gpio.h" #include "bk1080.h" #include "driver/gpio.h" #include "driver/i2c.h" #include "driver/system.h" #include "frequencies.h" #include "misc.h" //#define CHAN_SPACING 0u // 200kHz //#define CHAN_SPACING 1u // 100kHz #define CHAN_SPACING 2u // 50kHz #define VOLUME 15u #define SEEK_THRESHOLD 10u const freq_band_table_t FM_RADIO_FREQ_BAND_TABLE[] = { {875, 1080}, // 87.5 ~ 108 MHz {760, 1080}, // 76 ~ 108 MHz {760, 900}, // 76 ~ 90 MHz {640, 760} // 64 ~ 76 MHz }; static const uint16_t BK1080_RegisterTable[] = { 0x0008, // 0x00 0x1080, // 0x01 chip ID (1u << 9) | (1u << 0), // 0x02 0x0201 0000001000000001 0x0000, // 0x03 0x40C0, // 0x04 0100000011000000 (SEEK_THRESHOLD << 8) | (0u << 6) | (CHAN_SPACING << 4) | (VOLUME << 0), // 0x0A1F, // 0x05 00001010 00 01 1111 0x002E, // 0x06 0000000000101110 0x02FF, // 0x07 0000001011111111 0x5B11, // 0x08 0101101100010001 0x0000, // 0x09 0x411E, // 0x0A 0100000100011110 0x0000, // 0x0B 0xCE00, // 0x0C 1100111000000000 0x0000, // 0x0D 0x0000, // 0x0E 0x1000, // 0x0F 1000000000000000 0x3197, // 0x10 0011000110010111 0x0000, // 0x11 0x13FF, // 0x12 0001001111111111 0x9852, // 0x13 1001100001010010 0x0000, // 0x14 0x0000, // 0x15 0x0008, // 0x16 0x0000, // 0x17 0x51E1, // 0x18 0101000111100001 0xA8BC, // 0x19 1010100010111100 0x2645, // 0x1A 0010011001000101 0x00E4, // 0x1B 0000000011100100 0x1CD8, // 0x1C 0001110011011000 0x3A50, // 0x1D 0011101001010000 0xEAE0, // 0x1E 1110101011100000 0x3000, // 0x1F 0011000000000000 0x0200, // 0x20 0010000000000000 0x0000 // 0x21 }; uint16_t BK1080_BaseFrequency; uint16_t BK1080_FrequencyDeviation; bool is_init; uint16_t BK1080_freq_lower; uint16_t BK1080_freq_upper; uint16_t BK1080_freq_base; int16_t BK1080_freq_offset; void BK1080_Init(const uint16_t frequency, const bool initialise) { unsigned int i; // determine the lower and upper frequency limits when multiple bands are used if (!is_init) { BK1080_freq_base = 0; BK1080_freq_offset = 0; BK1080_freq_lower = 0xffff; BK1080_freq_upper = 0; for (i = 0; i < ARRAY_SIZE(FM_RADIO_FREQ_BAND_TABLE); i++) { const uint16_t lower = FM_RADIO_FREQ_BAND_TABLE[i].lower; const uint16_t upper = FM_RADIO_FREQ_BAND_TABLE[i].upper; if (BK1080_freq_lower > lower) BK1080_freq_lower = lower; if (BK1080_freq_upper < upper) BK1080_freq_upper = upper; } } if (initialise) { // init and enable the chip GPIO_ClearBit(&GPIOB->DATA, GPIOB_PIN_BK1080); if (!is_init) { for (i = 0; i < ARRAY_SIZE(BK1080_RegisterTable); i++) BK1080_WriteRegister(i, BK1080_RegisterTable[i]); SYSTEM_DelayMs(250); BK1080_WriteRegister(BK1080_REG_25_INTERNAL, 0xA83C); // 1010 1000 0011 1100 BK1080_WriteRegister(BK1080_REG_25_INTERNAL, 0xA8BC); // 1010 1000 1011 1100 SYSTEM_DelayMs(60); is_init = true; } else { BK1080_WriteRegister(BK1080_REG_02_POWER_CONFIGURATION, (1u << 9) | (1u << 0)); } BK1080_WriteRegister(BK1080_REG_05_SYSTEM_CONFIGURATION2, 0x0A5F); // 0000 1010 0101 1111 BK1080_SetFrequency(frequency); } else { // disable the chip BK1080_WriteRegister(BK1080_REG_02_POWER_CONFIGURATION, (1u << 9) | (1u << 6) | (1u << 0)); // 0x0241); // 0000 0010 0100 0001 GPIO_SetBit(&GPIOB->DATA, GPIOB_PIN_BK1080); } } uint16_t BK1080_ReadRegister(BK1080_Register_t Register) { uint8_t Value[2]; I2C_Start(); I2C_Write(0x80); I2C_Write((Register << 1) | I2C_READ); I2C_ReadBuffer(Value, sizeof(Value)); I2C_Stop(); return (Value[0] << 8) | Value[1]; } void BK1080_WriteRegister(BK1080_Register_t Register, uint16_t Value) { I2C_Start(); I2C_Write(0x80); I2C_Write((Register << 1) | I2C_WRITE); Value = ((Value >> 8) & 0xFF) | ((Value & 0xFF) << 8); I2C_WriteBuffer(&Value, sizeof(Value)); I2C_Stop(); } void BK1080_Mute(const bool Mute) { BK1080_WriteRegister(BK1080_REG_02_POWER_CONFIGURATION, (1u << 9) | (1u << 0) | (Mute ? 1u << 14 : 0u)); } void BK1080_SetFrequency(uint16_t Frequency) { int channel; uint16_t band = 0; // determine which band to use for (band = 0; band < ARRAY_SIZE(FM_RADIO_FREQ_BAND_TABLE); band++) if (Frequency >= FM_RADIO_FREQ_BAND_TABLE[band].lower && Frequency < FM_RADIO_FREQ_BAND_TABLE[band].upper) break; if (band >= ARRAY_SIZE(FM_RADIO_FREQ_BAND_TABLE)) { Frequency = BK1080_freq_lower; } // channel = (int)Frequency - FM_RADIO_FREQ_BAND_TABLE[band].lower; // 100kHz channel spacing channel = ((int)Frequency - FM_RADIO_FREQ_BAND_TABLE[band].lower) * 2; // 50kHz channel spacing channel = (channel < 0) ? 0 : (channel > 1023) ? 1023 : channel; BK1080_WriteRegister(BK1080_REG_05_SYSTEM_CONFIGURATION2, (SEEK_THRESHOLD << 8) | (band << 6) | (CHAN_SPACING << 4) | (VOLUME << 0)); BK1080_WriteRegister(BK1080_REG_03_CHANNEL, (uint16_t)channel); // SYSTEM_DelayMs(1); BK1080_WriteRegister(BK1080_REG_03_CHANNEL, (uint16_t)channel | (1u << 15)); } int16_t BK1080_get_freq_offset(const uint16_t Frequency) { BK1080_freq_base = Frequency; BK1080_freq_offset = (int16_t)BK1080_ReadRegister(BK1080_REG_07) / 16; return BK1080_freq_offset; } void BK1080_GetFrequencyDeviation(uint16_t Frequency) { BK1080_BaseFrequency = Frequency; BK1080_FrequencyDeviation = BK1080_ReadRegister(BK1080_REG_07) / 16; }