uv-k5-firmware-chinese-lts/frequencies.c

244 lines
8.3 KiB
C

/* Copyright 2023 Dual Tachyon
* https://github.com/DualTachyon
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "frequencies.h"
#include "misc.h"
#include "settings.h"
#include <assert.h>
// the BK4819 has 2 bands it covers, 18MHz(Some BK4819 chips can go down to 15MHz. It's mostly up to binning) ~ 630MHz and 760MHz ~ 1300MHz
#define BX4819_band1_lower 1500000
#define BX4819_band2_upper 130000000
const freq_band_table_t BX4819_band1 = {BX4819_band1_lower, 63000000};
const freq_band_table_t BX4819_band2 = {76000000, BX4819_band2_upper};
const freq_band_table_t frequencyBandTable[] =
{
#ifndef ENABLE_WIDE_RX
// QS original
[BAND1_50MHz ]={.lower = 5000000, .upper = 7600000},
[BAND7_470MHz]={.lower = 47000000, .upper = 60000000},
#else
// extended range
[BAND1_50MHz ]={.lower = BX4819_band1_lower, .upper = 10800000},
[BAND7_470MHz]={.lower = 47000000, .upper = BX4819_band2_upper},
#endif
[BAND2_108MHz]={.lower = 10800000, .upper = 13700000},
[BAND3_137MHz]={.lower = 13700000, .upper = 17400000},
[BAND4_174MHz]={.lower = 17400000, .upper = 35000000},
[BAND5_350MHz]={.lower = 35000000, .upper = 40000000},
[BAND6_400MHz]={.lower = 40000000, .upper = 47000000}
};
#ifdef ENABLE_NOAA
const uint32_t NoaaFrequencyTable[10] =
{
16255000,
16240000,
16247500,
16242500,
16245000,
16250000,
16252500,
16152500,
16177500,
16327500
};
#endif
// this order of steps has to be preserved for backwards compatibility with other/stock firmwares
const uint16_t gStepFrequencyTable[] = {
// standard steps
[STEP_2_5kHz] = 250,
[STEP_5kHz] = 500,
[STEP_6_25kHz] = 625,
[STEP_10kHz] = 1000,
[STEP_12_5kHz] = 1250,
[STEP_25kHz] = 2500,
[STEP_8_33kHz] = 833,
// custom steps
[STEP_0_01kHz] = 1,
[STEP_0_05kHz] = 5,
[STEP_0_1kHz] = 10,
[STEP_0_25kHz] = 25,
[STEP_0_5kHz] = 50,
[STEP_1kHz] = 100,
[STEP_1_25kHz] = 125,
[STEP_9kHz] = 900,
[STEP_15kHz] = 1500,
[STEP_20kHz] = 2000,
[STEP_30kHz] = 3000,
[STEP_50kHz] = 5000,
[STEP_100kHz] = 10000,
[STEP_125kHz] = 12500,
[STEP_200kHz] = 20000,
[STEP_250kHz] = 25000,
[STEP_500kHz] = 50000
};
const STEP_Setting_t StepSortedIndexes[] = {
STEP_0_01kHz, STEP_0_05kHz, STEP_0_1kHz, STEP_0_25kHz, STEP_0_5kHz, STEP_1kHz, STEP_1_25kHz, STEP_2_5kHz, STEP_5kHz, STEP_6_25kHz,
STEP_8_33kHz, STEP_9kHz, STEP_10kHz, STEP_12_5kHz, STEP_15kHz, STEP_20kHz, STEP_25kHz, STEP_30kHz, STEP_50kHz, STEP_100kHz,
STEP_125kHz, STEP_200kHz, STEP_250kHz, STEP_500kHz
};
STEP_Setting_t FREQUENCY_GetStepIdxFromSortedIdx(uint8_t sortedIdx)
{
return StepSortedIndexes[sortedIdx];
}
uint32_t FREQUENCY_GetSortedIdxFromStepIdx(uint8_t stepIdx)
{
for(uint8_t i = 0; i < ARRAY_SIZE(gStepFrequencyTable); i++)
if(StepSortedIndexes[i] == stepIdx)
return i;
return 0;
}
static_assert(ARRAY_SIZE(gStepFrequencyTable) == STEP_N_ELEM);
FREQUENCY_Band_t FREQUENCY_GetBand(uint32_t Frequency)
{
for (int32_t band = BAND_N_ELEM - 1; band >= 0; band--)
if (Frequency >= frequencyBandTable[band].lower)
return (FREQUENCY_Band_t)band;
return BAND1_50MHz;
}
uint8_t FREQUENCY_CalculateOutputPower(uint8_t TxpLow, uint8_t TxpMid, uint8_t TxpHigh, int32_t LowerLimit, int32_t Middle, int32_t UpperLimit, int32_t Frequency)
{
if (Frequency <= LowerLimit)
return TxpLow;
if (UpperLimit <= Frequency)
return TxpHigh;
if (Frequency <= Middle)
{
TxpMid += ((TxpMid - TxpLow) * (Frequency - LowerLimit)) / (Middle - LowerLimit);
return TxpMid;
}
TxpMid += ((TxpHigh - TxpMid) * (Frequency - Middle)) / (UpperLimit - Middle);
return TxpMid;
}
uint32_t FREQUENCY_RoundToStep(uint32_t freq, uint16_t step)
{
if(step == 833) {
uint32_t base = freq/2500*2500;
int chno = (freq - base) / 700; // convert entered aviation 8.33Khz channel number scheme to actual frequency.
return base + (chno * 833) + (chno == 3);
}
if(step == 1)
return freq;
if(step >= 1000)
step = step/2;
return (freq + (step + 1) / 2) / step * step;
}
int32_t TX_freq_check(const uint32_t Frequency)
{ // return '0' if TX frequency is allowed
// otherwise return '-1'
if (Frequency < frequencyBandTable[0].lower || Frequency > frequencyBandTable[BAND_N_ELEM - 1].upper)
return 1; // not allowed outside this range
if (Frequency >= BX4819_band1.upper && Frequency < BX4819_band2.lower)
return -1; // BX chip does not work in this range
switch (gSetting_F_LOCK)
{
case F_LOCK_DEF:
if (Frequency >= frequencyBandTable[BAND3_137MHz].lower && Frequency < frequencyBandTable[BAND3_137MHz].upper)
return 0;
// if (Frequency >= frequencyBandTable[BAND4_174MHz].lower && Frequency < frequencyBandTable[BAND4_174MHz].upper)
// if (gSetting_200TX)
// return 0;
// if (Frequency >= frequencyBandTable[BAND5_350MHz].lower && Frequency < frequencyBandTable[BAND5_350MHz].upper)
// if (gSetting_350TX && gSetting_350EN)
// return 0;
if (Frequency >= frequencyBandTable[BAND6_400MHz].lower && Frequency < frequencyBandTable[BAND6_400MHz].upper)
return 0;
// if (Frequency >= frequencyBandTable[BAND7_470MHz].lower && Frequency <= 60000000)
// if (gSetting_500TX)
// return 0;
break;
case F_LOCK_FCC:
if (Frequency >= 14400000 && Frequency < 14800000)
return 0;
if (Frequency >= 42000000 && Frequency < 45000000)
return 0;
break;
case F_LOCK_CE:
if (Frequency >= 14400000 && Frequency < 14600000)
return 0;
if (Frequency >= 43000000 && Frequency < 44000000)
return 0;
break;
case F_LOCK_GB:
if (Frequency >= 14400000 && Frequency < 14800000)
return 0;
if (Frequency >= 43000000 && Frequency < 44000000)
return 0;
break;
case F_LOCK_430:
if (Frequency >= frequencyBandTable[BAND3_137MHz].lower && Frequency < 17400000)
return 0;
if (Frequency >= 40000000 && Frequency < 43000000)
return 0;
break;
case F_LOCK_438:
if (Frequency >= frequencyBandTable[BAND3_137MHz].lower && Frequency < 17400000)
return 0;
if (Frequency >= 40000000 && Frequency < 43800000)
return 0;
break;
case F_LOCK_ALL:
break;
case F_LOCK_NONE:
for (uint32_t i = 0; i < ARRAY_SIZE(frequencyBandTable); i++)
if (Frequency >= frequencyBandTable[i].lower && Frequency < frequencyBandTable[i].upper)
return 0;
break;
}
// dis-allowed TX frequency
return -1;
}
int32_t RX_freq_check(const uint32_t Frequency)
{ // return '0' if RX frequency is allowed
// otherwise return '-1'
if (Frequency < frequencyBandTable[0].lower || Frequency > frequencyBandTable[BAND_N_ELEM - 1].upper)
return -1;
if (Frequency >= BX4819_band1.upper && Frequency < BX4819_band2.lower)
return -1;
return 0; // OK frequency
}