uv-k5-firmware-chinese-lts/external/CMSIS_5/CMSIS/RTOS2/RTX/Source/rtx_kernel.c
2023-11-30 14:38:27 +08:00

971 lines
28 KiB
C

/*
* Copyright (c) 2013-2023 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* -----------------------------------------------------------------------------
*
* Project: CMSIS-RTOS RTX
* Title: Kernel functions
*
* -----------------------------------------------------------------------------
*/
#include "rtx_lib.h"
// OS Runtime Information
osRtxInfo_t osRtxInfo __attribute__((section(".data.os"))) =
//lint -e{785} "Initialize only OS ID, OS Version and Kernel State"
{ .os_id = osRtxKernelId, .version = osRtxVersionKernel, .kernel.state = osRtxKernelInactive };
// ==== Helper functions ====
/// Block Kernel (disable: thread switching, time tick, post ISR processing).
static void KernelBlock (void) {
OS_Tick_Disable();
osRtxInfo.kernel.blocked = 1U;
__DSB();
if (GetPendSV() != 0U) {
ClrPendSV();
osRtxInfo.kernel.pendSV = 1U;
}
}
/// Unblock Kernel
static void KernelUnblock (void) {
osRtxInfo.kernel.blocked = 0U;
__DSB();
if (osRtxInfo.kernel.pendSV != 0U) {
osRtxInfo.kernel.pendSV = 0U;
SetPendSV();
}
OS_Tick_Enable();
}
// Get Kernel sleep time
static uint32_t GetKernelSleepTime (void) {
const os_thread_t *thread;
const os_timer_t *timer;
uint32_t delay;
delay = osWaitForever;
// Check Thread Delay list
thread = osRtxInfo.thread.delay_list;
if (thread != NULL) {
delay = thread->delay;
}
#ifdef RTX_THREAD_WATCHDOG
// Check Thread Watchdog list
thread = osRtxInfo.thread.wdog_list;
if (thread != NULL) {
if (thread->wdog_tick < delay) {
delay = thread->wdog_tick;
}
}
#endif
// Check Active Timer list
timer = osRtxInfo.timer.list;
if (timer != NULL) {
if (timer->tick < delay) {
delay = timer->tick;
}
}
return delay;
}
// ==== Service Calls ====
/// Initialize the RTOS Kernel.
/// \note API identical to osKernelInitialize
static osStatus_t svcRtxKernelInitialize (void) {
if (osRtxInfo.kernel.state == osRtxKernelReady) {
EvrRtxKernelInitialized();
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return osOK;
}
if (osRtxInfo.kernel.state != osRtxKernelInactive) {
EvrRtxKernelError((int32_t)osError);
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return osError;
}
#ifdef RTX_TZ_CONTEXT
// Initialize Secure Process Stack
if (TZ_InitContextSystem_S() == 0U) {
EvrRtxKernelError(osRtxErrorTZ_InitContext_S);
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return osError;
}
#endif
// Initialize osRtxInfo
(void)memset(&osRtxInfo.kernel, 0, sizeof(osRtxInfo) - offsetof(osRtxInfo_t, kernel));
osRtxInfo.isr_queue.data = osRtxConfig.isr_queue.data;
osRtxInfo.isr_queue.max = osRtxConfig.isr_queue.max;
osRtxInfo.thread.robin.timeout = osRtxConfig.robin_timeout;
// Initialize Memory Pools (Variable Block Size)
if (osRtxMemoryInit(osRtxConfig.mem.common_addr, osRtxConfig.mem.common_size) != 0U) {
osRtxInfo.mem.common = osRtxConfig.mem.common_addr;
}
if (osRtxMemoryInit(osRtxConfig.mem.stack_addr, osRtxConfig.mem.stack_size) != 0U) {
osRtxInfo.mem.stack = osRtxConfig.mem.stack_addr;
} else {
osRtxInfo.mem.stack = osRtxInfo.mem.common;
}
if (osRtxMemoryInit(osRtxConfig.mem.mp_data_addr, osRtxConfig.mem.mp_data_size) != 0U) {
osRtxInfo.mem.mp_data = osRtxConfig.mem.mp_data_addr;
} else {
osRtxInfo.mem.mp_data = osRtxInfo.mem.common;
}
if (osRtxMemoryInit(osRtxConfig.mem.mq_data_addr, osRtxConfig.mem.mq_data_size) != 0U) {
osRtxInfo.mem.mq_data = osRtxConfig.mem.mq_data_addr;
} else {
osRtxInfo.mem.mq_data = osRtxInfo.mem.common;
}
// Initialize Memory Pools (Fixed Block Size)
if (osRtxConfig.mpi.stack != NULL) {
(void)osRtxMemoryPoolInit(osRtxConfig.mpi.stack,
osRtxConfig.mpi.stack->max_blocks,
osRtxConfig.mpi.stack->block_size,
osRtxConfig.mpi.stack->block_base);
osRtxInfo.mpi.stack = osRtxConfig.mpi.stack;
}
if (osRtxConfig.mpi.thread != NULL) {
(void)osRtxMemoryPoolInit(osRtxConfig.mpi.thread,
osRtxConfig.mpi.thread->max_blocks,
osRtxConfig.mpi.thread->block_size,
osRtxConfig.mpi.thread->block_base);
osRtxInfo.mpi.thread = osRtxConfig.mpi.thread;
}
if (osRtxConfig.mpi.timer != NULL) {
(void)osRtxMemoryPoolInit(osRtxConfig.mpi.timer,
osRtxConfig.mpi.timer->max_blocks,
osRtxConfig.mpi.timer->block_size,
osRtxConfig.mpi.timer->block_base);
osRtxInfo.mpi.timer = osRtxConfig.mpi.timer;
}
if (osRtxConfig.mpi.event_flags != NULL) {
(void)osRtxMemoryPoolInit(osRtxConfig.mpi.event_flags,
osRtxConfig.mpi.event_flags->max_blocks,
osRtxConfig.mpi.event_flags->block_size,
osRtxConfig.mpi.event_flags->block_base);
osRtxInfo.mpi.event_flags = osRtxConfig.mpi.event_flags;
}
if (osRtxConfig.mpi.mutex != NULL) {
(void)osRtxMemoryPoolInit(osRtxConfig.mpi.mutex,
osRtxConfig.mpi.mutex->max_blocks,
osRtxConfig.mpi.mutex->block_size,
osRtxConfig.mpi.mutex->block_base);
osRtxInfo.mpi.mutex = osRtxConfig.mpi.mutex;
}
if (osRtxConfig.mpi.semaphore != NULL) {
(void)osRtxMemoryPoolInit(osRtxConfig.mpi.semaphore,
osRtxConfig.mpi.semaphore->max_blocks,
osRtxConfig.mpi.semaphore->block_size,
osRtxConfig.mpi.semaphore->block_base);
osRtxInfo.mpi.semaphore = osRtxConfig.mpi.semaphore;
}
if (osRtxConfig.mpi.memory_pool != NULL) {
(void)osRtxMemoryPoolInit(osRtxConfig.mpi.memory_pool,
osRtxConfig.mpi.memory_pool->max_blocks,
osRtxConfig.mpi.memory_pool->block_size,
osRtxConfig.mpi.memory_pool->block_base);
osRtxInfo.mpi.memory_pool = osRtxConfig.mpi.memory_pool;
}
if (osRtxConfig.mpi.message_queue != NULL) {
(void)osRtxMemoryPoolInit(osRtxConfig.mpi.message_queue,
osRtxConfig.mpi.message_queue->max_blocks,
osRtxConfig.mpi.message_queue->block_size,
osRtxConfig.mpi.message_queue->block_base);
osRtxInfo.mpi.message_queue = osRtxConfig.mpi.message_queue;
}
osRtxInfo.kernel.state = osRtxKernelReady;
EvrRtxKernelInitialized();
return osOK;
}
/// Get RTOS Kernel Information.
/// \note API identical to osKernelGetInfo
static osStatus_t svcRtxKernelGetInfo (osVersion_t *version, char *id_buf, uint32_t id_size) {
uint32_t size;
if (version != NULL) {
version->api = osRtxVersionAPI;
version->kernel = osRtxVersionKernel;
}
if ((id_buf != NULL) && (id_size != 0U)) {
if (id_size > sizeof(osRtxKernelId)) {
size = sizeof(osRtxKernelId);
} else {
size = id_size;
}
(void)memcpy(id_buf, osRtxKernelId, size);
}
EvrRtxKernelInfoRetrieved(version, id_buf, id_size);
return osOK;
}
/// Get the current RTOS Kernel state.
/// \note API identical to osKernelGetState
static osKernelState_t svcRtxKernelGetState (void) {
osKernelState_t state = osRtxKernelState();
EvrRtxKernelGetState(state);
return state;
}
/// Start the RTOS Kernel scheduler.
/// \note API identical to osKernelStart
static osStatus_t svcRtxKernelStart (void) {
os_thread_t *thread;
if (osRtxInfo.kernel.state != osRtxKernelReady) {
EvrRtxKernelError(osRtxErrorKernelNotReady);
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return osError;
}
// Thread startup (Idle and Timer Thread)
if (!osRtxThreadStartup()) {
EvrRtxKernelError((int32_t)osError);
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return osError;
}
// Setup SVC and PendSV System Service Calls
SVC_Setup();
// Setup RTOS Tick
if (OS_Tick_Setup(osRtxConfig.tick_freq, OS_TICK_HANDLER) != 0) {
EvrRtxKernelError((int32_t)osError);
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return osError;
}
osRtxInfo.tick_irqn = OS_Tick_GetIRQn();
// Enable RTOS Tick
OS_Tick_Enable();
// Switch to Ready Thread with highest Priority
thread = osRtxThreadListGet(&osRtxInfo.thread.ready);
osRtxThreadSwitch(thread);
osRtxInfo.kernel.state = osRtxKernelRunning;
EvrRtxKernelStarted();
return osOK;
}
/// Lock the RTOS Kernel scheduler.
/// \note API identical to osKernelLock
static int32_t svcRtxKernelLock (void) {
int32_t lock;
switch (osRtxInfo.kernel.state) {
case osRtxKernelRunning:
#ifdef RTX_SAFETY_CLASS
// Check the safety class
if ((osRtxThreadGetRunning()->attr >> osRtxAttrClass_Pos) <
(osRtxInfo.kernel.protect >> osRtxKernelProtectClass_Pos)) {
EvrRtxKernelError((int32_t)osErrorSafetyClass);
lock = (int32_t)osErrorSafetyClass;
break;
}
#endif
osRtxInfo.kernel.state = osRtxKernelLocked;
EvrRtxKernelLocked(0);
lock = 0;
break;
case osRtxKernelLocked:
EvrRtxKernelLocked(1);
lock = 1;
break;
default:
EvrRtxKernelError((int32_t)osError);
lock = (int32_t)osError;
break;
}
return lock;
}
/// Unlock the RTOS Kernel scheduler.
/// \note API identical to osKernelUnlock
static int32_t svcRtxKernelUnlock (void) {
int32_t lock;
switch (osRtxInfo.kernel.state) {
case osRtxKernelRunning:
EvrRtxKernelUnlocked(0);
lock = 0;
break;
case osRtxKernelLocked:
osRtxInfo.kernel.state = osRtxKernelRunning;
EvrRtxKernelUnlocked(1);
lock = 1;
break;
default:
EvrRtxKernelError((int32_t)osError);
lock = (int32_t)osError;
break;
}
return lock;
}
/// Restore the RTOS Kernel scheduler lock state.
/// \note API identical to osKernelRestoreLock
static int32_t svcRtxKernelRestoreLock (int32_t lock) {
int32_t lock_new;
switch (osRtxInfo.kernel.state) {
case osRtxKernelRunning:
case osRtxKernelLocked:
#ifdef RTX_SAFETY_CLASS
// Check the safety class
if ((osRtxThreadGetRunning()->attr >> osRtxAttrClass_Pos) <
(osRtxInfo.kernel.protect >> osRtxKernelProtectClass_Pos)) {
EvrRtxKernelError((int32_t)osErrorSafetyClass);
lock_new = (int32_t)osErrorSafetyClass;
break;
}
#endif
switch (lock) {
case 0:
osRtxInfo.kernel.state = osRtxKernelRunning;
EvrRtxKernelLockRestored(0);
lock_new = 0;
break;
case 1:
osRtxInfo.kernel.state = osRtxKernelLocked;
EvrRtxKernelLockRestored(1);
lock_new = 1;
break;
default:
EvrRtxKernelError((int32_t)osError);
lock_new = (int32_t)osError;
break;
}
break;
default:
EvrRtxKernelError((int32_t)osError);
lock_new = (int32_t)osError;
break;
}
return lock_new;
}
/// Suspend the RTOS Kernel scheduler.
/// \note API identical to osKernelSuspend
static uint32_t svcRtxKernelSuspend (void) {
uint32_t delay;
if (osRtxInfo.kernel.state != osRtxKernelRunning) {
EvrRtxKernelError(osRtxErrorKernelNotRunning);
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return 0U;
}
#ifdef RTX_SAFETY_CLASS
// Check the safety class
if ((osRtxThreadGetRunning()->attr >> osRtxAttrClass_Pos) <
(osRtxInfo.kernel.protect >> osRtxKernelProtectClass_Pos)) {
EvrRtxKernelError((int32_t)osErrorSafetyClass);
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return 0U;
}
#endif
KernelBlock();
osRtxInfo.kernel.state = osRtxKernelSuspended;
delay = GetKernelSleepTime();
EvrRtxKernelSuspended(delay);
return delay;
}
/// Resume the RTOS Kernel scheduler.
/// \note API identical to osKernelResume
static void svcRtxKernelResume (uint32_t sleep_ticks) {
os_thread_t *thread;
os_timer_t *timer;
uint32_t delay;
uint32_t ticks, kernel_tick;
if (osRtxInfo.kernel.state != osRtxKernelSuspended) {
EvrRtxKernelResumed();
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return;
}
delay = GetKernelSleepTime();
if (sleep_ticks >= delay) {
ticks = delay - 1U;
} else {
ticks = sleep_ticks;
}
// Update Thread Delay sleep ticks
thread = osRtxInfo.thread.delay_list;
if (thread != NULL) {
thread->delay -= ticks;
}
// Update Timer sleep ticks
timer = osRtxInfo.timer.list;
if (timer != NULL) {
timer->tick -= ticks;
}
#ifdef RTX_THREAD_WATCHDOG
// Update Thread Watchdog sleep ticks
thread = osRtxInfo.thread.wdog_list;
if (thread != NULL) {
thread->wdog_tick -= ticks;
}
#endif
kernel_tick = osRtxInfo.kernel.tick + sleep_ticks;
osRtxInfo.kernel.tick += ticks;
while (osRtxInfo.kernel.tick != kernel_tick) {
osRtxInfo.kernel.tick++;
// Process Thread Delays
osRtxThreadDelayTick();
// Process Timers
if (osRtxInfo.timer.tick != NULL) {
osRtxInfo.timer.tick();
}
#ifdef RTX_THREAD_WATCHDOG
// Process Watchdog Timers
osRtxThreadWatchdogTick();
#endif
}
osRtxInfo.kernel.state = osRtxKernelRunning;
osRtxThreadDispatch(NULL);
KernelUnblock();
EvrRtxKernelResumed();
}
#ifdef RTX_SAFETY_CLASS
/// Protect the RTOS Kernel scheduler access.
/// \note API identical to osKernelProtect
static osStatus_t svcRtxKernelProtect (uint32_t safety_class) {
uint32_t thread_class;
osStatus_t status;
// Check parameters
if (safety_class > 0x0FU) {
EvrRtxKernelError((int32_t)osErrorParameter);
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return osErrorParameter;
}
switch (osRtxInfo.kernel.state) {
case osRtxKernelInactive:
EvrRtxKernelError(osRtxErrorKernelNotReady);
status = osError;
break;
case osRtxKernelReady:
osRtxInfo.kernel.protect &= (uint8_t)~osRtxKernelProtectClass_Msk;
osRtxInfo.kernel.protect |= (uint8_t)(safety_class << osRtxKernelProtectClass_Pos);
EvrRtxKernelProtected();
status = osOK;
break;
case osRtxKernelRunning:
// Check the safety class
thread_class = (uint32_t)osRtxThreadGetRunning()->attr >> osRtxAttrClass_Pos;
if ((safety_class > thread_class) ||
(thread_class < ((uint32_t)osRtxInfo.kernel.protect >> osRtxKernelProtectClass_Pos))) {
EvrRtxKernelError((int32_t)osErrorSafetyClass);
status = osErrorSafetyClass;
break;
}
osRtxInfo.kernel.protect &= (uint8_t)~osRtxKernelProtectClass_Msk;
osRtxInfo.kernel.protect |= (uint8_t)(safety_class << osRtxKernelProtectClass_Pos);
EvrRtxKernelProtected();
status = osOK;
break;
case osRtxKernelLocked:
case osRtxKernelSuspended:
EvrRtxKernelError(osRtxErrorKernelNotRunning);
status = osError;
break;
default:
// Should never come here
status = osError;
break;
}
return status;
}
/// Destroy objects for specified safety classes.
/// \note API identical to osKernelDestroyClass
static osStatus_t svcRtxKernelDestroyClass (uint32_t safety_class, uint32_t mode) {
os_thread_t *thread;
os_thread_t *thread_next;
// Check parameters
if (safety_class > 0x0FU) {
EvrRtxKernelError((int32_t)osErrorParameter);
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return osErrorParameter;
}
// Check running thread safety class (when called from thread)
thread = osRtxThreadGetRunning();
if ((thread != NULL) && IsSVCallIrq()) {
if ((((mode & osSafetyWithSameClass) != 0U) &&
((thread->attr >> osRtxAttrClass_Pos) < (uint8_t)safety_class)) ||
(((mode & osSafetyWithLowerClass) != 0U) &&
(((thread->attr >> osRtxAttrClass_Pos) + 1U) < (uint8_t)safety_class))) {
EvrRtxKernelError((int32_t)osErrorSafetyClass);
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return osErrorSafetyClass;
}
}
// Delete RTOS objects for safety class
osRtxMutexDeleteClass(safety_class, mode);
osRtxSemaphoreDeleteClass(safety_class, mode);
osRtxMemoryPoolDeleteClass(safety_class, mode);
osRtxMessageQueueDeleteClass(safety_class, mode);
osRtxEventFlagsDeleteClass(safety_class, mode);
osRtxTimerDeleteClass(safety_class, mode);
// Threads in Wait List
thread = osRtxInfo.thread.wait_list;
while (thread != NULL) {
thread_next = thread->delay_next;
if ((((mode & osSafetyWithSameClass) != 0U) &&
((thread->attr >> osRtxAttrClass_Pos) == (uint8_t)safety_class)) ||
(((mode & osSafetyWithLowerClass) != 0U) &&
((thread->attr >> osRtxAttrClass_Pos) < (uint8_t)safety_class))) {
osRtxThreadListRemove(thread);
osRtxThreadDelayRemove(thread);
#ifdef RTX_THREAD_WATCHDOG
osRtxThreadWatchdogRemove(thread);
#endif
osRtxMutexOwnerRelease(thread->mutex_list);
osRtxThreadJoinWakeup(thread);
osRtxThreadDestroy(thread);
}
thread = thread_next;
}
// Threads in Delay List
thread = osRtxInfo.thread.delay_list;
while (thread != NULL) {
thread_next = thread->delay_next;
if ((((mode & osSafetyWithSameClass) != 0U) &&
((thread->attr >> osRtxAttrClass_Pos) == (uint8_t)safety_class)) ||
(((mode & osSafetyWithLowerClass) != 0U) &&
((thread->attr >> osRtxAttrClass_Pos) < (uint8_t)safety_class))) {
osRtxThreadListRemove(thread);
osRtxThreadDelayRemove(thread);
#ifdef RTX_THREAD_WATCHDOG
osRtxThreadWatchdogRemove(thread);
#endif
osRtxMutexOwnerRelease(thread->mutex_list);
osRtxThreadJoinWakeup(thread);
osRtxThreadDestroy(thread);
}
thread = thread_next;
}
// Threads in Ready List
thread = osRtxInfo.thread.ready.thread_list;
while (thread != NULL) {
thread_next = thread->thread_next;
if ((((mode & osSafetyWithSameClass) != 0U) &&
((thread->attr >> osRtxAttrClass_Pos) == (uint8_t)safety_class)) ||
(((mode & osSafetyWithLowerClass) != 0U) &&
((thread->attr >> osRtxAttrClass_Pos) < (uint8_t)safety_class))) {
osRtxThreadListRemove(thread);
#ifdef RTX_THREAD_WATCHDOG
osRtxThreadWatchdogRemove(thread);
#endif
osRtxMutexOwnerRelease(thread->mutex_list);
osRtxThreadJoinWakeup(thread);
osRtxThreadDestroy(thread);
}
thread = thread_next;
}
// Running Thread
thread = osRtxThreadGetRunning();
if ((thread != NULL) &&
((((mode & osSafetyWithSameClass) != 0U) &&
((thread->attr >> osRtxAttrClass_Pos) == (uint8_t)safety_class)) ||
(((mode & osSafetyWithLowerClass) != 0U) &&
((thread->attr >> osRtxAttrClass_Pos) < (uint8_t)safety_class)))) {
if ((osRtxKernelGetState() != osRtxKernelRunning) ||
(osRtxInfo.thread.ready.thread_list == NULL)) {
osRtxThreadDispatch(NULL);
EvrRtxKernelError((int32_t)osErrorResource);
//lint -e{904} "Return statement before end of function" [MISRA Note 1]
return osErrorResource;
}
#ifdef RTX_THREAD_WATCHDOG
osRtxThreadWatchdogRemove(thread);
#endif
osRtxMutexOwnerRelease(thread->mutex_list);
osRtxThreadJoinWakeup(thread);
// Switch to next Ready Thread
osRtxThreadSwitch(osRtxThreadListGet(&osRtxInfo.thread.ready));
// Update Stack Pointer
thread->sp = __get_PSP();
#ifdef RTX_STACK_CHECK
// Check Stack usage
if (!osRtxThreadStackCheck(thread)) {
osRtxThreadSetRunning(osRtxInfo.thread.run.next);
(void)osRtxKernelErrorNotify(osRtxErrorStackOverflow, thread);
}
#endif
// Mark running thread as deleted
osRtxThreadSetRunning(NULL);
// Destroy Thread
osRtxThreadDestroy(thread);
} else {
osRtxThreadDispatch(NULL);
}
return osOK;
}
#endif
/// Get the RTOS kernel tick count.
/// \note API identical to osKernelGetTickCount
static uint32_t svcRtxKernelGetTickCount (void) {
EvrRtxKernelGetTickCount(osRtxInfo.kernel.tick);
return osRtxInfo.kernel.tick;
}
/// Get the RTOS kernel tick frequency.
/// \note API identical to osKernelGetTickFreq
static uint32_t svcRtxKernelGetTickFreq (void) {
EvrRtxKernelGetTickFreq(osRtxConfig.tick_freq);
return osRtxConfig.tick_freq;
}
/// Get the RTOS kernel system timer count.
/// \note API identical to osKernelGetSysTimerCount
static uint32_t svcRtxKernelGetSysTimerCount (void) {
uint32_t tick;
uint32_t count;
tick = (uint32_t)osRtxInfo.kernel.tick;
count = OS_Tick_GetCount();
if (OS_Tick_GetOverflow() != 0U) {
count = OS_Tick_GetCount();
tick++;
}
count += tick * OS_Tick_GetInterval();
EvrRtxKernelGetSysTimerCount(count);
return count;
}
/// Get the RTOS kernel system timer frequency.
/// \note API identical to osKernelGetSysTimerFreq
static uint32_t svcRtxKernelGetSysTimerFreq (void) {
uint32_t freq = OS_Tick_GetClock();
EvrRtxKernelGetSysTimerFreq(freq);
return freq;
}
// Service Calls definitions
//lint ++flb "Library Begin" [MISRA Note 11]
SVC0_0 (KernelInitialize, osStatus_t)
SVC0_3 (KernelGetInfo, osStatus_t, osVersion_t *, char *, uint32_t)
SVC0_0 (KernelStart, osStatus_t)
SVC0_0 (KernelLock, int32_t)
SVC0_0 (KernelUnlock, int32_t)
SVC0_1 (KernelRestoreLock, int32_t, int32_t)
SVC0_0 (KernelSuspend, uint32_t)
SVC0_1N(KernelResume, void, uint32_t)
#ifdef RTX_SAFETY_CLASS
SVC0_1 (KernelProtect, osStatus_t, uint32_t)
SVC0_2 (KernelDestroyClass, osStatus_t, uint32_t, uint32_t)
#endif
SVC0_0 (KernelGetState, osKernelState_t)
SVC0_0 (KernelGetTickCount, uint32_t)
SVC0_0 (KernelGetTickFreq, uint32_t)
SVC0_0 (KernelGetSysTimerCount, uint32_t)
SVC0_0 (KernelGetSysTimerFreq, uint32_t)
//lint --flb "Library End"
// ==== Library functions ====
/// RTOS Kernel Pre-Initialization Hook
//lint -esym(759,osRtxKernelBeforeInit) "Prototype in header"
//lint -esym(765,osRtxKernelBeforeInit) "Global scope (can be overridden)"
//lint -esym(522,osRtxKernelBeforeInit) "Can be overridden (do not lack side-effects)"
__WEAK void osRtxKernelBeforeInit (void) {
}
/// RTOS Kernel Error Notification Handler
/// \note API identical to osRtxErrorNotify
uint32_t osRtxKernelErrorNotify (uint32_t code, void *object_id) {
EvrRtxKernelErrorNotify(code, object_id);
return osRtxErrorNotify(code, object_id);
}
// ==== Public API ====
/// Initialize the RTOS Kernel.
osStatus_t osKernelInitialize (void) {
osStatus_t status;
osRtxKernelBeforeInit();
EvrRtxKernelInitialize();
if (IsException() || IsIrqMasked()) {
EvrRtxKernelError((int32_t)osErrorISR);
status = osErrorISR;
} else {
status = __svcKernelInitialize();
}
return status;
}
/// Get RTOS Kernel Information.
osStatus_t osKernelGetInfo (osVersion_t *version, char *id_buf, uint32_t id_size) {
osStatus_t status;
EvrRtxKernelGetInfo(version, id_buf, id_size);
if (IsException() || IsIrqMasked() || IsPrivileged()) {
status = svcRtxKernelGetInfo(version, id_buf, id_size);
} else {
status = __svcKernelGetInfo(version, id_buf, id_size);
}
return status;
}
/// Get the current RTOS Kernel state.
osKernelState_t osKernelGetState (void) {
osKernelState_t state;
if (IsException() || IsIrqMasked() || IsPrivileged()) {
state = svcRtxKernelGetState();
} else {
state = __svcKernelGetState();
}
return state;
}
/// Start the RTOS Kernel scheduler.
osStatus_t osKernelStart (void) {
osStatus_t status;
EvrRtxKernelStart();
if (IsException() || IsIrqMasked()) {
EvrRtxKernelError((int32_t)osErrorISR);
status = osErrorISR;
} else {
status = __svcKernelStart();
}
return status;
}
/// Lock the RTOS Kernel scheduler.
int32_t osKernelLock (void) {
int32_t lock;
EvrRtxKernelLock();
if (IsException() || IsIrqMasked()) {
EvrRtxKernelError((int32_t)osErrorISR);
lock = (int32_t)osErrorISR;
} else {
lock = __svcKernelLock();
}
return lock;
}
/// Unlock the RTOS Kernel scheduler.
int32_t osKernelUnlock (void) {
int32_t lock;
EvrRtxKernelUnlock();
if (IsException() || IsIrqMasked()) {
EvrRtxKernelError((int32_t)osErrorISR);
lock = (int32_t)osErrorISR;
} else {
lock = __svcKernelUnlock();
}
return lock;
}
/// Restore the RTOS Kernel scheduler lock state.
int32_t osKernelRestoreLock (int32_t lock) {
int32_t lock_new;
EvrRtxKernelRestoreLock(lock);
if (IsException() || IsIrqMasked()) {
if (IsFault() || IsSVCallIrq() || IsPendSvIrq() || IsTickIrq(osRtxInfo.tick_irqn)) {
lock_new = svcRtxKernelRestoreLock(lock);
} else {
EvrRtxKernelError((int32_t)osErrorISR);
lock_new = (int32_t)osErrorISR;
}
} else {
lock_new = __svcKernelRestoreLock(lock);
}
return lock_new;
}
/// Suspend the RTOS Kernel scheduler.
uint32_t osKernelSuspend (void) {
uint32_t ticks;
EvrRtxKernelSuspend();
if (IsException() || IsIrqMasked()) {
EvrRtxKernelError((int32_t)osErrorISR);
ticks = 0U;
} else {
ticks = __svcKernelSuspend();
}
return ticks;
}
/// Resume the RTOS Kernel scheduler.
void osKernelResume (uint32_t sleep_ticks) {
EvrRtxKernelResume(sleep_ticks);
if (IsException() || IsIrqMasked()) {
EvrRtxKernelError((int32_t)osErrorISR);
} else {
__svcKernelResume(sleep_ticks);
}
}
#ifdef RTX_SAFETY_CLASS
/// Protect the RTOS Kernel scheduler access.
osStatus_t osKernelProtect (uint32_t safety_class) {
osStatus_t status;
EvrRtxKernelProtect(safety_class);
if (IsException() || IsIrqMasked()) {
EvrRtxKernelError((int32_t)osErrorISR);
status = osErrorISR;
} else {
status = __svcKernelProtect(safety_class);
}
return status;
}
/// Destroy RTOS objects for specified safety classes.
osStatus_t osKernelDestroyClass (uint32_t safety_class, uint32_t mode) {
osStatus_t status;
EvrRtxKernelDestroyClass(safety_class, mode);
if (IsException() || IsIrqMasked()) {
if (IsTickIrq(osRtxInfo.tick_irqn)) {
status = svcRtxKernelDestroyClass(safety_class, mode);
} else {
EvrRtxKernelError((int32_t)osErrorISR);
status = osErrorISR;
}
} else {
status = __svcKernelDestroyClass(safety_class, mode);
}
return status;
}
#endif
/// Get the RTOS kernel tick count.
uint32_t osKernelGetTickCount (void) {
uint32_t count;
if (IsException() || IsIrqMasked()) {
count = svcRtxKernelGetTickCount();
} else {
count = __svcKernelGetTickCount();
}
return count;
}
/// Get the RTOS kernel tick frequency.
uint32_t osKernelGetTickFreq (void) {
uint32_t freq;
if (IsException() || IsIrqMasked()) {
freq = svcRtxKernelGetTickFreq();
} else {
freq = __svcKernelGetTickFreq();
}
return freq;
}
/// Get the RTOS kernel system timer count.
uint32_t osKernelGetSysTimerCount (void) {
uint32_t count;
if (IsException() || IsIrqMasked()) {
count = svcRtxKernelGetSysTimerCount();
} else {
count = __svcKernelGetSysTimerCount();
}
return count;
}
/// Get the RTOS kernel system timer frequency.
uint32_t osKernelGetSysTimerFreq (void) {
uint32_t freq;
if (IsException() || IsIrqMasked()) {
freq = svcRtxKernelGetSysTimerFreq();
} else {
freq = __svcKernelGetSysTimerFreq();
}
return freq;
}