If we encounter an unsupported protocol in the "bind" list, don't
ipso-facto consider it a fatal error. We continue to abort startup if
there are no listening sockets at all.
This ensures that the lack of IPv6 support does not prevent Redis from
starting on Debian where we try to bind to the ::1 interface by default
(via "bind 127.0.0.1 ::1"). A machine with IPv6 disabled (such as some
container systems) would simply fail to start Redis after the initiall
call to apt(8).
This is similar to the case for where "bind" is not specified:
https://github.com/antirez/redis/issues/3894
... and was based on the corresponding PR:
https://github.com/antirez/redis/pull/4108
... but also adds EADDRNOTAVAIL to the list of errors to catch which I
believe is missing from there.
This issue was raised in Debian as both <https://bugs.debian.org/900284>
& <https://bugs.debian.org/914354>.
Fake clients are used in special situations and are not linked to the
normal clients list, freeing them will always result in Redis crashing
in one way or the other.
It's not common to send replies to fake clients, but we have one usage
in the modules API. When a client is blocked, we associate to the
blocked client object (that is safe to manipulate in a thread), a fake
client that accumulates replies. So because of this bug there was
the problem described in issue #5443.
The fix was verified to work with the provided example module. To write
a regression is very hard and unlikely to be triggered in the future.
We have this operation in two places: when caching the master and
when linking a new client after the client creation. By having an API
for this we avoid incurring in errors when modifying one of the two
places forgetting the other. The function is also a good place where to
document why we cache the linked list node.
Related to #4497 and #4210.
During the full database resync we may still have unsaved changes
on the receiving side. This causes a race condition between
synced data rename/load and the rename of rdbSave tempfile.
Related to #5201.
I removed the !!! Warning part since compared to the other errors, a
missing EXEC is in theory a normal happening in the AOF file, at least
in theory: may happen in a differnet number of situations, and it's
probably better to don't give the user the feeling that something really
bad happened.
PR #5081 fixes an "interesting" bug about Redis Cluster failover but in
general about the updating of repl_down_since, that is used in order to
count the time a slave was left disconnected from its master.
While the fix provided resolves the specific issue, in general the
validity of repl_down_since is limited to states that are different
than the state CONNECTED, and the disconnected time is set when the
state is DISCONNECTED. However from CONNECTED to other states, the state
machine must always go to DISCONNECTED first. So it makes sense to set
the field to zero (since it is meaningless in that context) when the
state is set to CONNECTED.
The slave sends \n keepalive messages to the master while parsing the rdb,
and later sends REPLCONF ACK once a second. rarely, the master recives both
a linefeed char and a REPLCONF in the same read, \n*3\r\n$8\r\nREPLCONF\r\n...
and it tries to trim two chars (\r\n) from the query buffer,
trimming the '*' from *3\r\n$8\r\nREPLCONF\r\n...
then the master tries to process a command starting with '3' and replies to
the slave a bunch of -ERR and one +OK.
although the slave silently ignores these (prints a log message), this corrupts
the replication offset at the slave since the slave increases the replication
offset, and the master did not.
other than the fix in processInlineBuffer, i did several other improvments
while hunting this very rare bug.
- when redis replies with "unknown command" it includes a portion of the
arguments, not just the command name. so it would be easier to understand
what was recived, in my case, on the slave side, it was -ERR, but
the "arguments" were the interesting part (containing info on the error).
- about a year ago i added code in addReplyErrorLength to print the error to
the log in case of a reply to master (since this string isn't actually
trasmitted to the master), now changed that block to print a similar log
message to indicate an error being sent from the master to the slave.
note that the slave is marked as CLIENT_SLAVE only after PSYNC was received,
so this will not cause any harm for REPLCONF, and will only indicate problems
that are gonna corrupt the replication stream anyway.
- two places were c->reply was emptied, and i wanted to reset sentlen
this is a precaution (i did not actually see such a problem), since a
non-zero sentlen will cause corruption to be transmitted on the socket.
The ability of "SENTINEL SET" to change the reconfiguration script at
runtime is a problem even in the security model of Redis: any client
inside the network may set any executable to be ran once a failover is
triggered.
This option adds protection for this problem: by default the two
SENTINEL SET subcommands modifying scripts paths are denied. However the
user is still able to rever that using the Sentinel configuration file
in order to allow such a feature.
After the first fix to the struct package I found another similar
problem, which is fixed by this patch. It could be reproduced easily by
running the following script:
return struct.unpack('f', "xxxxxxxxxxxxx",-3)
The above will access bytes before the 'data' pointer.
@soloestoy sent me this additional fixes, after searching for similar
problems to the one reported in mp_pack(). I'm committing the changes
because it was not possible during to make a public PR to protect Redis
users and give Redis providers some time to patch their systems.
During an auditing Apple found that the "struct" Lua package
we ship with Redis (http://www.inf.puc-rio.br/~roberto/struct/) contains
a security problem. A bound-checking statement fails because of integer
overflow. The bug exists since we initially integrated this package with
Lua, when scripting was introduced, so every version of Redis with
EVAL/EVALSHA capabilities exposed is affected.
Instead of just fixing the bug, the library was updated to the latest
version shipped by the author.
During an auditing effort, the Apple Vulnerability Research team discovered
a critical Redis security issue affecting the Lua scripting part of Redis.
-- Description of the problem
Several years ago I merged a pull request including many small changes at
the Lua MsgPack library (that originally I authored myself). The Pull
Request entered Redis in commit 90b6337c1, in 2014.
Unfortunately one of the changes included a variadic Lua function that
lacked the check for the available Lua C stack. As a result, calling the
"pack" MsgPack library function with a large number of arguments, results
into pushing into the Lua C stack a number of new values proportional to
the number of arguments the function was called with. The pushed values,
moreover, are controlled by untrusted user input.
This in turn causes stack smashing which we believe to be exploitable,
while not very deterministic, but it is likely that an exploit could be
created targeting specific versions of Redis executables. However at its
minimum the issue results in a DoS, crashing the Redis server.
-- Versions affected
Versions greater or equal to Redis 2.8.18 are affected.
-- Reproducing
Reproduce with this (based on the original reproduction script by
Apple security team):
https://gist.github.com/antirez/82445fcbea6d9b19f97014cc6cc79f8a
-- Verification of the fix
The fix was tested in the following way:
1) I checked that the problem is no longer observable running the trigger.
2) The Lua code was analyzed to understand the stack semantics, and that
actually enough stack is allocated in all the cases of mp_pack() calls.
3) The mp_pack() function was modified in order to show exactly what items
in the stack were being set, to make sure that there is no silent overflow
even after the fix.
-- Credits
Thank you to the Apple team and to the other persons that helped me
checking the patch and coordinating this communication.
The AOF tail of a combined RDB+AOF is based on the premise of applying
the AOF commands to the exact state that there was in the server while
the RDB was persisted. By expiring keys while loading the RDB file, we
change the state, so applying the AOF tail later may change the state.
Test case:
* Time1: SET a 10
* Time2: EXPIREAT a $time5
* Time3: INCR a
* Time4: PERSIT A. Start bgrewiteaof with RDB preamble. The value of a is 11 without expire time.
* Time5: Restart redis from the RDB+AOF: consistency violation.
Thanks to @soloestoy for providing the patch.
Thanks to @trevor211 for the original issue report and the initial fix.
Check issue #4950 for more info.
While this feature is not used by Redis, ae.c implements the ability for
a timer to call a finalizer callback when an timer event is deleted.
This feature was bugged since the start, and because it was never used
we never noticed a problem. However Anthony LaTorre was using the same
library in order to implement a different system: he found a bug that he
describes as follows, and which he fixed with the patch in this commit,
sent me by private email:
--- Anthony email ---
've found one bug in the current implementation of the timed events.
It's possible to lose track of a timed event if an event is added in
the finalizerProc of another event.
For example, suppose you start off with three timed events 1, 2, and
3. Then the linked list looks like:
3 -> 2 -> 1
Then, you run processTimeEvents and events 2 and 3 finish, so now the
list looks like:
-1 -> -1 -> 2
Now, on the next iteration of processTimeEvents it starts by deleting
the first event, and suppose this finalizerProc creates a new event,
so that the list looks like this:
4 -> -1 -> 2
On the next iteration of the while loop, when it gets to the second
event, the variable prev is still set to NULL, so that the head of the
event loop after the next event will be set to 2, i.e. after deleting
the next event the event loop will look like:
2
and the event with id 4 will be lost.
I've attached an example program to illustrate the issue. If you run
it you will see that it prints:
```
foo id = 0
spam!
```
But if you uncomment line 29 and run it again it won't print "spam!".
--- End of email ---
Test.c source code is as follows:
#include "ae.h"
#include <stdio.h>
aeEventLoop *el;
int foo(struct aeEventLoop *el, long long id, void *data)
{
printf("foo id = %lld\n", id);
return AE_NOMORE;
}
int spam(struct aeEventLoop *el, long long id, void *data)
{
printf("spam!\n");
return AE_NOMORE;
}
void bar(struct aeEventLoop *el, void *data)
{
aeCreateTimeEvent(el, 0, spam, NULL, NULL);
}
int main(int argc, char **argv)
{
el = aeCreateEventLoop(100);
//aeCreateTimeEvent(el, 0, foo, NULL, NULL);
aeCreateTimeEvent(el, 0, foo, NULL, bar);
aeMain(el);
return 0;
}
Anthony fixed the problem by using a linked list for the list of timers, and
sent me back this patch after he tested the code in production for some time.
The code looks sane to me, so committing it to Redis.